CMPL

<Coliop | Coin> Mathematical Programming Language

coliop.org

Version 1.12
March 2018

M. Steglich, T. Schleiff

CMPL v.1.12 - Manual 1

Table of contents

Yo 1o TU L 1 | =] PP PP PPPPPP 6
2 CMPL Language refereNCe MANUAL........uiiiiiiuiiieiiie i s s s s e e s s s e e s s e e aa s e e eaaa s e ean s eaa e ennseansanen 7
2.1 CMPL €lEMENTS. ...ciiirttiieie i e e e e erirre s e s e e e e s e s e e e e e e e b e e e e e e e e e e b e e e e e e e e e e e s a e e eea s e e e e e erna e e e rrnn s 7
2.1.1 General structure of @ CMPL MOGEL........uiiiiiiiiirirriiinn s esrrrrrss s s e s s s rerrn s s s e senas 7
2.1.2 Keywords and other syntactiC @lements.........cciivrriiiiniinieccrrss e e e 8
080G 20)= 3N 9

B N T I = = 1= = P 9
2.1.3.2 Vari@bles. ..ceuuiiiieie sttt 11
288 G TG B g o oS3 g o =T P 13

B 0 JE I g T =1 =S 15

N O I 3 T= = a1 PP 16
2.2 Parameter EXPrESSIONS. ..uuuieereuseerreasserrrassserrsassserrnssserrsssssernnssseernsssssernnssseernsnsseernnnsseernssssssrnnnses 19
2.2.1 OVBIVIBW.ctuuiiiiite i e eetie s e et s s e e s s s e eea e s e s esae e e e e ea s e e e e s e e e e eaa e se e e s aa e aeee s s ne e ena e aeeena e neennnennnaran 19
W02 A A = VAR (1] Lo o) o PPN 19
2.2.3 Set operations and fUNCHIONS. e 20
2.2.4 Mathematical fUNCHIONS.......ccvvrriiiii e s s s e e e e s s s e s s e e rrrrnnnnnneaes 22
B T Y/ 0T o= 11 PN 24

B A S g g T [o]0 1= = 1T o PP 24
2.3 Input and OULPUL OPEratioNS.uuiiiiiicecrerriss s s s s s e rrrrss s s e s e e e e s s s s e e r e e e s s s e e e rnr i a e e e e s sernnnan 26
2.3.1 Error @Nnd USEr MESSAGES. .. ecerrrrruuussrsrarrrrrsssssssssssssnnsssssssssssesmmmmssssssimeemmmmmnntia 26
2.3.2 CMPIDALA fIlES.... i iiiiri i ran 27
2.3.3 Readcsv and readsStdin.......cceuuruieiiiiecccriiiis s 31
BN T 1 T [o [PP 32
] = 1= 0 = P 32
2.4.1 parameters and variables SECHION.........ciiiiriiiiiii i 33
2.4.2 objectives and constraints SECHION.......uuuii i e 33
2.5 CONEIOl SErUCEUNE. .. ettitiie e i e e e et s e e e e s e s e e e e e e e e e s e e e e e e e e e s s s e s ee s e e eennseeennnannn 34
B TR R 1 < TN 34
2.5.2 CoNLrol NEAAET......iieeeeeeiiiiis e ea errnaans 35
2.5.2.1 Tteration NEAEIS.ccvuiii it 35
BRI A o o [T T Tt T =T P 35
2.5.2.3 LOCAl @SSIGNMIENTES. ... iiiiiiiiitis s esrirrss s s s e e s s s e s s e e e s s s e s s e e rrs s s s na s s e eran s anenns 36

BTG 1T 5 g F= A T o = PR 37
2.5.4 Control StatemMENTS. . cuuuuii i e e e 37
2.5.5 Specific CONLrol SErUCTUIES....vuu i e e e e r e een 38
BT T R o [o o T PPN 38
2.5.5.2 If-then ClaUSE......ciiiiiiiiie et ran 39
BTG T o = T 40
2.5.5.4 WHIlE 100D cc e e e 41

2.5.6 Set and sum control Structure as EXPreSSiON......cuuiiiiirrii i e e ees 41
PSR b= 1 gD VL= (o gl o] r=] [0 PP 43
2.7 Automatic model reformulations.ccuui i 46

CMPL v.1.12 - Manual 2

B A O 1V < V1< 46

0 2\ = L) (= U T T PP 46
2.7.3 Equivalent transformations of Variable Products. ... 46
2.7.3.1 Variable Products with at least one binary variable...........ccccooiiiiiiiiiic e, 47
2.7.3.2 Variable Product with at least one integer variable............coooiiiii 47

R B = 0] 0] PP 48
2.8.1 Selected decCiSion ProblEMS.ccurrriiiri e e s e s s e s e e n e s e e e 48
2.8.1.1 The diet Problem.... ..ot s s e e eas 48
PR T S o o Ta 8T T o T 3T PP 51
2.8.1.3 Production mix including thresholds and step-wise fixed COStS........cccoeerimmmmmnnnnnnnnnn. 54
2.8.1.4 The Knapsack Problem........cuuu i e e e 55
2.8.1.5 Transportation problem using 1-tuple Sets........vvrirrriiiiiiicrerr e 58
2.8.1.6 Transportation problem using multidimensional sets (2-tuple sets).........cccccvvviiiiinnniiennn, 61
2.8.1.7 Quadratic assignment ProblEM.........ccuuiiiiiiiii 63
2.8.1.8 Quadratic assignment problem using the solutionPool option..........ccccovviiiiiiiiiiieiennnnnn. 66
2.8.1.9 Generic travelling salesman problem...........coiiiiiiiiiii 67

2.8.2 Other selected EXamPIES.......ccuurruiiiriiie i s s e s s s e r e e s s e e r e s e e e s e e e e rrna s 69
2.8.2.1 Solving the knapsack Problem...........cooviiiiiiiiiini i e e e 69
2.8.2.2 Finding the maximum of a concave function using the bisection method.............ccceevveee. 71

3 CMPL SOftWAIrE PACKAGE. ...eerereeererrererrererenereseresesseesssesesesssssssssessessssesssesesssssssssssssssssssssssnsnsssnsnsssnsnnnnnnnns 72
3.1 CMPL software package in @ GIaNCE........iiiiuiiiiiiii i 72
T N 1= = = o) o P PP TP 73
G T0C T/ = PPN 73
3.3.1 RUNNING CMPL....cciiiii i s e e e s a s e aa s 73
3.3.2 Usage of the CMPL command liN€ T00L........euuererrreerrmmreermneernreerrrrrrrresrrrreererrnrrrrrerrrrersnsnerrmenees 73
TG TR T3 1= Q@ 1= oL (N 75
3.3.4 Using CMPL With Several SOIVEIS.......ccoiiiieeeeeeee e e e e e 76

G TR 2 PP 77
33142 GLPK e 77
TR TR 0 I U] (o] o PPN 78
3.314.4 SCIP.. e s 78
TR I o) 80
TR R O 01 < g0 V= TP 81

G 1 0] o o J PP RRTN 81
3.5 CMPLSEIVEL....ictterruiiseiseseeerrssaas s s sesseerassaa s s s sesserrar s s s eea s e s nee s s s e e eeen e e s s s s eaesennnnna s eeneeenennnnns 86
S Y [T (SR = V< ol o To T [P 88
T A €1 T I 4 To T [T PSP OPPPPPPRE 90
3.5.3 Reliability @nd failOVET......c.uuiiiiiii e e e 94

G TS)V 1 P 98
G T8 | < N 98
3.8 Input and output file fOrmMats......uuuuiii i e 99
OIS T B O <] oY T PP PSP PRPPION 99
SRR I @\ - o Ta [@104 o] |- | = TP 100
3.8 3 FrEE = MPS.. . ittt er e e rr e r e ran 100

CMPL v.1.12 - Manual 3

TR T 134T 0] 1 3 = ol PPN 101

3.8.5 ASCII OF CSV reSUIL filES....uuueeeieiee e e e e e e e e e e e e enns 104
3.8.6 CMPISOIULIONS. ... s e e e e e e nnnns 105
OIS A © 401 0] | [T T [PPN 108
TR IR @124 0] 11) o T OSSPSR 110
@1 [I o £ PO P TP PPPPPPPPPPPPRPRPPPIN 111
4.1 Creating Python and Java applications with a local CMPL installation............cccccevvvvviiniinneeennnnnnnnns 111
U)V 1| PP 113
F.1.2 JOMPLL. . s 116
4.2 Creating Python and Java applications using CMPLSEIVEr..........ccoooviiiiiiiiiieeeeeeeeee e 120
L R VL | 121
G.2.2 JOMPLL. .. s 122
4.3 pyCMPL reference ManuUal...........ccouiiiiiiiii e 123
S G T A 14 o R PSP 123
I @ o] T = 0 T = T 125
4.3.3 CMPlei e 127
4.3.3.1 Establishing MOdelS.........coooieii e 127
4.3.3.2 Manipulating MOAEIS.........ccuuiumiiiniiiiiirir e e e e 129
4.3.3.3 SOIVING MOGEIS. .. ciiieieeerriieisiireserrrsssss s s e s s e rrrss s s s s s s e e rar s e e e s e e e r e s s e e ssrnnnssennnnsernnn 130
4.3.3.4 Reading SOIULIONS.......coiiiiiiiiiii e s s e e e e s e ees 134
4.3.3.5 ReadiNg CMPL MESSAQES. .. cetuuuiiiiituitietiiuaesetisussseas s s seasa s s sessa s eeasa s s sessasseesnassesnnanen 141

E G T @ o] | = (al=] oo LT
... 142
4.4 JCMPL refer@NCe M@NUAL. ueeeeeeeeeeeneneneeenennnesenensnssessnsnsssssssnsssssnsnsnsssnsssssssnnassseeeensnnssseeennnnnnsnns 142
L 10 0] R 142
R 04 o] 1= = 1 0 = =) P 145
G @ 1o TR 148
4.4.3.1 Establishing MOAEIS........ccuuuiiiiiiiiei i e e e e e e e 148
4.4.3.2 Manipulating MOGEIS.........ccooi i 149
4.4.3.3 SOIVING MOAEIS.....coiiiieeiriiiie e s s r e s s s e s s e e rars s s s e ren s s renasenens 151
4.4.3.4 Reading SOIULIONS.iiiiiiiceerriiis s e s e rrss s s s e e e e e s s s s e e r e s e e e s s e r s s e rn s s e rnnneeennn 155
4.4.3.5 Reading CMPL MESSAGES. iiieirrrrrnnussiirsarirnsnussasasssesssssssssssssensssssssssssseenssnsnsarens 160

R 09T o] 2ol o u o] =TT
... 161
R o= 10 0] o L= PPN 162
T A I T 1= ol o = o RO P 162
4.5.1.1 Problem description and CMPL MOdel..........coiiiiiiiiiiiiiiiiiirii s 162

L T A oY | 162
LT 3 (111 o PP P PP P PP PPP PP 163

4.5.2 Transportation Problem.. ... 165
4.5.2.1 Problem description and CMPL MOdel..........cociiiiiiiiiiiiiiniceccrrisne e e e 165
4.5.2.2 PYCMPLu..cciii et 165
4.5.2.3 JOMPL....eeeeeeeeeeeeeeeeeeeeee ettt e e ettt e et et et e e e e e et e £ e e et e e e £ £ e e e £ £ e £ e eneeeeeeeEeeeneneeERneeeerennnnannns 168

4.5.3 The shortest path problem...........ccoo i 170

CMPL v.1.12 - Manual 4

4.5.3.1 Problem description and CMPL MOdel..........cooiviiiiiiiiiniiiriirii s 170

L TR 107 o1/ | PP 171

4.5.3.3 JOMPL.. .ttt a e e e e rr e rran 172

4.5.4 Solving randomized shortest path problems in parallel..........coiiiiiiiiiiii e, 174
4.5.4.1 Problem desSCription........uuuiiiiiiiiiiciiiiiis e e e 174

4.5.4.2 PYCMPL....iiiii ettt 174

L T 0 1| PN 176

4.5.5 Column generation for a cutting Stock problem...........eeeeviiiiimimimiiiiieiieeeeeeeeeee e 179
4.5.5.1 Problem description and CMPL MOdEL.........coiiiiiiiiiiiiiiiiiiiir i eeeie s era e ean e enna 179

4.5.5.2 JCMPL... ettt e e e e e e e e e rrnn 180

L0 TR T0C T 1| PPN 184

SR AV0 11 g o £=3=TaTa JK o] o] ot PR EPPTPPTNt 189
G AV 0] 0= o[PP 190
(oI Y (= To = Te I O T o= = 1 =1 (=) N 190
6.2 Selected GLPK ParameEers. e e e n e e 203

CMPL v.1.12 - Manual 5

1 About CMPL

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and
a system for mathematical programming and optimisation of linear optimisation problems.

The CMPL syntax is similar in formulation to the original mathematical model but also includes syntactic ele-
ments from modern programming languages. CMPL is intended to combine the clarity of mathematical mod-
els with the flexibility of programming languages.

CMPL executes CBC, GLPK, Gurobi, SCIP or CPLEX directly to solve the generated model instance. Because it
is also possible to transform the mathematical problem into MPS, Free-MPS or OSiL files, alternative solvers
can be used.

CMPL is an open source project licensed under GPL. It is written in C++ and is available for most of the rel -
evant operating systems (Windows, OS X and Linux).

The CMPL distribution contains Coliop which is an (simple) IDE (Integrated Development Environment) for
CMPL. Coliop is an open source project licensed under GPL. It is written in C++ and is as an integral part of
the CMPL distribution.

The CMPL package also contains pyCMPL, jCMPL and CMPLServer.

PYCMPL is the CMPL application programming interface (API) for Python and an interactive shell and
jJCMPL is CMPL's Java API. The main idea of this APIs is to define sets and parameters within the user ap-
plication, to start and control the solving process and to read the solution(s) into the application if the prob-
lem is feasible. All variables, objective functions and constraints are defined in CMPL. These functionalities
can be used with a local CMPL installation or a CMPLServer.

CMPLServer is an XML-RPC-based web service for distributed and grid optimisation that can be used with
CMPL, pyCMPL and jCMPL. It is reasonable to solve large models remotely on the CMPLServer that is in-
stalled on a high performance system. CMPL provides four XML-based file formats for the communication
between a CMPLServer and its clients. (CmplInstance, CmplSolutions, CmplMessages, CmplInfo).

pyCMPL, jCMPL and CMPLServer are licensed under LGPLV3.

CMPL, Coliop, pyCMPL, jCMPL and CMPLServer are COIN-OR projects initiated by the Technical University of
Applied Sciences Wildau.

CMPL v.1.12 - Manual 6

2 CMPL Language reference manual

2.1 CMPL elements

2.1.1 General structure of a CMPL model

The structure of a CMPL model follows the standard model of linear programming (LP), which is defined by a
linear objective function and linear constraints. Apart from the variable decision vector x all other compon-
ents are constant.

¢ x>max!

S.t.

A-x<b

x=0
A CMPL model consists of four sections, the parameters section, the variables section, the object-
ives section and the constraints section, which can be inserted several times and mixed in a different
order. Each sector can contain one or more lines with user-defined expressions.

parameters:

definition of the parameters
variables:

definition of the variables
objectives:

definition of the objective (s)

constraints:

definition of the constraints

A typical LP problem is the production mix problem. The aim is to find an optimal quantity for the products,
depending on given capacities. The objective function is defined by the profit contributions per unit ¢ and the
variable quantity of the products x. The constraints consist of the use of the capacities and the ranges for
the decision variables. The use of the capacities is given by the product of the coefficient matrix 4 and the
vector of the decision variables x and restricted by the vector of the available capacities ».
The simple example:

1-x,+2-x,+3-x;>max !

S.1.

5.6:x,+7.7-x,+10.5-x,<15

9.8 x,+4.2-x,+11.1-x,<20

0<x, ;n=1(1)3

can be formulated in CMPL as follows:

parameters:
cll = (1, 2, 3);
b[] := (15, 20);
A[l] :((56177, 10.5)!

CMPL v.1.12 - Manual 7

(9.8, 4.2, 11.1));

variables:

x[1l..count(c[])]: real;
objectives:

c[]T * x[] -> max;
constraints:

A[,] * x[] <= DbI[]:

x[] >= 0;

2.1.2 Keywords and other syntactic elements

Keywords

parameters, variables, objectives, | section markers

constraints

real, integer, binary types of variable

real, integer, binary, string, set types only used for type casts

max, min objective senses

set, in, len, defset key words for sets

max, min, count, format, type functions for parameter expressions

sqrt, exp, 1ln, 1lg, 1d, srand, rand, | mathematical functions that can be used for para-
sin, cos, tan, acos, asin, atan, sinh, meter expressions

cosh, tanh, abs, ceil, floor, round

include include of a CMPL file

readcsv, readstdin data import from a CSV file or from user input
error, echo error and user message

sum summation

continue, break, default, repeat key words for control structures

Arithmetic operators

- signs for parameters or addition/subtraction
” to the power of

*/ multiplication and division

div mod

integer division and remainder on division

assignment operator

= <= >= conditions for constraints, while-loops and if-then
clauses
=< > = <> additional

conditions in while-loops and if-then

clauses

CMPL v.1.12 - Manual

&& |11

logical operations (and, or, not)

<<

element operator for checking whether an index is
an element of a set

Other syntactic elements

()

- arithmetical bracketing in constant expressions
- lists for initialising vectors of constants

- parameters for constant functions

- increment in an algorithmic set

- indexing of vectors
- range specification in variable definitions

- control structures

- algorithmic set (e.g. range for indices or loop coun-
ters)
- range specification in variable definitions

- element separation in an initialisation list for
constant vectors and enumeration sets

- separation of function parameters

- separation of indices

- separation of loop heads in a loop

- mark indicating beginning of sections

- definition of variables

- definition of parameter type

- separation of loop header from loop body
- separation of line names

- separation of alternative blocks in a control struc-
ture

- mark indicating end of a statement - every state-
ment is to be closed by a semicolon

- comment (up to end of line)

- comment (between /* and */)

2.1.3 Objects

2.1.3.1 Parameters

A parameters section consists of parameter definitions and assignments to parameters. A parameter can

only be defined within the parameters section using an assignment or through using a cmplData file (see

2.3.2 cmplData files) and a corresponding CMPL header option.

Note that a parameter can be used as a constant in a linear optimisation model as coefficients in objectives
and constraints. Otherwise parameters can be used like variables in programming languages. Parameters are

CMPL v.1.12 - Manual

usable in expressions, for instance in the calculation and definition of other parameters. A user can assign a
value to a parameter and can then subsequently change the value with a new assignment.

A parameter is identified by name and, if necessary, by indices. A parameter can be a scalar or an array of
parameter values (e.g. vector, matrix or another multidimensional construct). A parameter is defined by an
assignment with the assignment operator :=.

Usage:

name := scalarExpression;
namel[index] := scalarExpression;
namel [set]] := arrayExpression;

name Name of the parameter

index Indexing expression that defines a position in an array of parameters.
Described in 2.1.3.3 Indices and sets

scalarExpression A scalar parameter or a single part of an array of parameters is assigned a
single integer or real number, a single string, the scalar result of a math-
ematical function.

set (Optional) set expression (list of indices) for the definition of the dimen-
sion of the array

If more than one set is used then the sets have to be separated by com-
mas.

Described in 2.1.3.3 Indices and sets

arrayExpression A non-scalar expression consists of a list of scalarExpressions or
arrayExpression. The elements of the list are separated by commas
and imbedded in brackets.

The elements of the list can also be sets. But it is not possible to mix set
and non-set expressions.

If an array contains only one element, then it is necessary to include an
additional comma behind the element. Otherwise the expression is inter-
preted as an arithmetical bracket.

Examples:

k := 10; parameter k with value 10

k[1..5] = (0.5, 1, 2, 3.3, 5.5); vector of parameters with 5 elements

k[] := (0.5, 1, 2, 3.3, 5.5);

A[]l:= (16, 45.4); definition of a vector with two integer values a[1]1=16
and a[2]=45.

CMPL v.1.12 - Manual 10

al, 1 = ((5.6, 7.7, 10.5), dense matrix with 2 rows and 3 columns
(9.8, 4.2, 11.1));

b[] = (22 ,); definition of the vector b with only one element.

b[] := (22); causes an error: array dimensions don't
match, since (22) is not interpreted as an array but
as an assignment of a scalar expression.

products := set("bikel", "bike2"); defines a vector for machine hours based on the set

machineHours[products]:= (5.4, 10); products

myString := "this is a string"; string parameter
q = 3; parameter g with value 3
gll..ql == (1, 2, 3); usage of g for the definition of the parameter g
= 1(1)2; definition of a parameter cube that is based on the
= 1(1)2; sets x, y and z.
z = 1(1)2;
cube[x,y,z]l:= (((1,2),(3,4)) ,
((5,6),(7,8)))i

set (
blal := (

(1,11,101,21,102,21,[3,2]
10, 20, 30 , 40);

);

definition of a sparse matrix b that is based on the 2-
tuple set a.

If a name is used for a parameter the name cannot be used for a variable.

A special kind of parameter is local parameters, which can only be defined within the head of a control struc-
ture. A local parameter is only valid in the body of the control structure and can be used like any other para-
meter. Only scalar parameters are permitted as local parameters. Local parameters are mainly used as loop

counters that are to be iterated over a set.

2.1.3.2 Variables

The variables section is intended to declare the variables of a decision model, which are necessary

for the definition of objectives and constraints in the decision model. A model variable is identified by
name and, if necessary, by an index. A type must be specified. A model variable can be a scalar or a part of
a vector, a matrix or another array of variables. A variable cannot be assigned a value.

Usage:

variables:

name :

type [[[lowerBound]..[upperBound]]];

name[index]

name[set]

type [[[lowerBound].. [upperBound]]];

type [[[lowerBound].. [upperBound]]];

CMPL v.1.12 - Manual 11

name

type

[lowerBound. .upperBound]

name of model variable

type of model variable.
Possible types are real, integer, binary.

optional parameter for limits of model variable

lowerBound and upperBound must be a real or integer expres-
sion. For the type binary it is not possible to specify bounds.

index Indexing expression that defines a position in an array of variables.
Described in 2.1.3.3 Indices and sets

set (Optional) set expression (list of indices) for the definition of the di-
mension of the array
If more than one set is used then the sets have to be separated by
commas.
Described in 2.1.3.3 Indices and sets

Examples:

x: real; x is a real model variable with no ranges

x: real[0..1007;

% is a real model variable, 0<x<100

x[1..5]: integer[10..20];

vector with 5 elements, 10<x,<20,7=1(1)5

x[1..5,1..5,1..5]: reallO.

-1 a three-dimensional array of real model variables with

125 elements identified by indices,
X, ;420014 j,k=1(1)5

variables:

x[a]l: real[O0..];

a:=set([1,1], [1/2]/ [2/2]/ [3/2]);

parameters:
prod := set("bikel", "bike2");

variables: defines a vector of non-negative real model variables
x[prod]: real[O..]; based on the set prod

y: binary; x is a binary model variable y €{0,1}

parameters:

defines a sparse matrix of non-negative real model vari-
ables based on the set a of 2-tupels.

Different indices may cause model variables to have different types. (e.g. the following is permissible: vari-

ables: x[1]: real; x[2]: integer;)

If a name is used for a model variable definition, different usages of this hame with indices can only refer to
model variables and not to parameters.

CMPL v.1.12 - Manual

12

2.1.3.3 Indices and sets

Sets are used for the definitions of arrays of parameters or model variables and for iterations in loops. In-
dices are necessary to identify an element of an array like a vector or matrix of parameters or variables.

An index is always an n-tuple (pair of n entries), where n is the count of dimensions of an array. Entries are
single integers or strings. If n>1 then the entries have to be separated by commas.

Usage:

[entry-1 [, entry-2, .. , entry-n] 1] # n-Tuple

A set is a collection of indices. Sets can be defined by an enumeration of elements or by algorithms within

the parameters section. A set can be stored in a scalar parameter or in an element of an array of paramet-
ers. A set can also be defined by using a cmplData file and a corresponding CMPL header option.

Usage of set definitions:

startNumber(in/decrementor) endNumber #algorithmic 1l-tuple set
[startNumber] .. [endNumber] #algorithmic l-tuple set
.integer. #algorithmic 1l-tuple set
.string. #algorithmic l-tuple set
set(entry-1 [, entry-2, .. , entry-n]) fenumeration l-tuple set
set(n-tuple-1 [, n-tuple-2, .. ,n-tuple-n]) #enumeration (n>1)-tuple set

startNumber (in/decrementor) endNumber 1-tuple set of integers based on an algorithm
The set starts at the startNumber, is changed by an in-
crementer Or decrementer at every iteration and
ends at the endNumber.

startNumber. .endNumber 1-tuple set of integers based on an algorithm
The set starts at the startNumber, is changed by the
number one at every iteration and ends at the endnum-

ber.

startNumber and endNumber are optional elements.

startNumber. . infinite 1-tuple set with all integers greater than or equal
to startNumber

. .endNumber infinite 1-tuple set with all integers less than or equal to

endNumber
infinite 1-tuple set with all integers and strings

.integer. infinite 1-tuple set with all integers

CMPL v.1.12 - Manual 13

.string.

set (entry-1 [, entry-2,

infinite 1-tuple set with all strings

., entry-n]) definition of a 1-tuple enumeration set

An enumeration 1-tuple set consists of one or more in-
teger expressions or string expressions separated by com-
mas and embedded in brackets, and is described by the
key word set.

set (n-tuple-1[,n-tuple-2,..]) definition of an n-tuple enumeration set with n>1
An enumeration (n>1)-tuple set consists of one or more
tuples separated by commas and embedded in brackets,
and is described by the key word set.

Examples:

Si=..; s is assigned an infinite 1-tuple set of all integers and
strings

Si=..6; s is assigned s€(...,4,5,6)

s:1=6..; s is assigned 5€(6,7.8,...)

s:=0..6; sis assigned s€(0,1,...,6)

s:=0(1)6;

5:=10(-2) 4; s is assigned 5€(10,8,6,4)

prod := set("bikel", "bike2"); enumeration 1-tuple set of strings

a:= set(1, "a", 3, "b", 5, "c"); enumeration 1-tuple set of strings and integers

x[a]:=(10,20,30,40,50,60);

echo x[1];
echo x["a"];

{i in a: echo x[i];}

vector x identified by the set a is assigned an integer
vector

The following user messages are displayed:
10

20

10 20 30 40 50 60

a:=[1,2];

a is assigned a 2-tuple of integers

b::["pl", "p2"];

b is assigned a 2-tuple of strings

routes =
[2,21,12,31,12

set([1,1],I[1,2],[1,4],
(41, 03,11, 03,3])i

routes is assigned a 2-tuple set of integers

c[routes] :=

. | The parameter array is defined over routes and is as-

signed 3, 2, 6, 5, 2, 3, 2, 4.

{ [1i,J] in routes:

echo "["+i+","+j+"]: n + C[i,j];

The following user messages are displayed:
[1,17:

SN W NN ooy N W

CMPL v.1.12 - Manual

14

2.1.3.4 Line names

Line names are useful in huge models to provide a better overview of the model. In CMPL a line hame can
be defined by characters, numbers and the underscore character _ followed by a colon. Names that are
used for parameters or model variables cannot be used for a line name. Within a control structure a line
name can include the current value of local parameters. This is especially useful for local parameters which
are used as a loop counter.

Usage:

lineName:

lineNamek:

lineName$1l$:
lineName28:

loopName { controlStructure }

lineName: Defines a line name for a single row of the model. If more than one
row is to be generated by CMPL, then the line hames are extended by
numbers in natural order.

Sk$ k is replaced by the value of the local parameter k.

1 1 is replaced by the number of the current line of the matrix.

$28 In an implicit loop $253 is replaced by the specific value of the free in-
dex.

loopName{controlStructure} Defines a line name subject to the following control structure. The val-
ues of loop counters in the control structure are appended automatic-

ally.
Examples:
parameters:
Al1..2,1..3] :=((1,2,3),(4,5,06));
b[1l..2] := (100,100);
c[l..3] := (20,10,10);
variables:
x[1..3]: reall0..];
objectives:
profit: c[]T *x[] ->max; generates a line profit
constraints:
restriction: A[,] * x[] <=b[]; generates 2 lines restriction 1
restriction 2

CMPL v.1.12 - Manual 15

{ 1:=1(1)2:
restriction i: A[,]*x[]<=b[];

}

generates 2 lines restriction 1

restriction 2

variables:
x [products]: reallO..];

objectives:

profit: c[]T *x[] ->max;
constraints:
capa_2: A[,] * x[] <=b[];

restriction { i:=1(1)3: A[,]*x[]<=b[]; } |generates 2 lines restriction 1
restriction 2

parameters:

products:=set ("P1", "P2", "P3");

machines:=set ("M1","M2") ;

A[machines,products] :=((1,2,3),

(4,5,6))
b[machines] := (100,100);
c[products] := (20,10,10);

generates 3 lines profit
capa M1

capa M2

2.1.4 CMPL header

A CMPL header is intended to define CMPL options, solver options and display options for the specific CMPL

model. An additional intention of the CMPL header

is to specify external data files which are to be connected

to the CMPL model. The elements of the CMPL header are not part of the CMPL model and are processed

before the CMPL model is interpreted.

Usage CMPL header for CMPL options, solver optio

ns and display options:

%$arg optionName [optionValuel]

gopt solverName solverOption

%display var|con name[*] [namel[*]]

%display nonZeros

%display solutionPool

[solverOptionValuel]

#CMPL options
#Solver options
#Display options

#Display option
#Display option

optionName [optionValue] All CMPL command line arguments excluding a new defini-
tion of the input file. Please see subchapter 3.3.2.

solverName In this version are only solver options for cbc, glpk and
gurobi supported.

solverOption [solverOptionValue] Please see to the solver specific parameters subchapter 6
Appendix.

CMPL v.1.12 - Manual 16

var|con namel[*] [namel[*]] Sets variable name(s) or constraint name(s) that are to be
displayed in one of the solution reports. Different names
are to be separated by spaces.

If name is combined with the asterix * then all variables
or constraints with names that start with name are selec-
ted.

nonzZeros Only variables and constraints with nonzero activities are
shown in the solution report.

solutionPool Gurobi and Cplex are able to generate and store multiple
solutions to a mixed integer programming (MIP) problem.
With the display option solutionPool feasible integer
solutions found during a MIP optimisation can be shown in
the solution report. It is recommended to control the be-
haviour of the solution pool by setting the particular Gur-
obi or Cplex solver options.

Examples:
%arg -solver glpk GLPK is used as the solver.
Sarg -solutionAscii CMPL writes the optimisation results in an ASCII file.
%arg -solver cbc CBC is to be executed on a CMPLServer located at
%arg -cmplUrl 194.95.44.187.
http://194.95.44.187:8008
sopt glpk nopresol If GLPK is used then the presolver is switched off.
sdisplay var x Only the variable x is to be displayed in the solution re-
port.
%display con x* y* All constraints with names that start with x or y are

shown in the solution report.

If an external cmplData file is to be read into the CMPL model then a user can specify the file name and the
needed parameters and sets within the CMPL header. All definitions of the parameters and sets can be
mixed with another. The syntax of a cmplData is described in subchapter 2.3.2 cmplData files.

Usage CMPL header for defining external data:

$data [filename] : [setl set[[rankl]] [, setZ set[[rankl] , ..]
$data [filename] : [paraml] [, param2 , ..]
%$data [filename] : [paramarrayl[set]l] [, paramarrayZ[set] , ..]

filename file name of the cmplData file

If the file name contains white spaces the name can
be enclosed in double quotes.

CMPL v.1.12 - Manual 17

[set]l set[[rank]]][,set2 set[[rank]],

[paraml] [, param2 , ..

If filename is not specified a generic name
modelname.cdat Wwill be used.

.1 specifies a set with the name set1 and the rank

rank

The rank defines the number n of the entries in the
n-tuples that are contained in the set. For 1-tuple
sets is the definition of the rank optional.

For more than one set the sets are to be separated
by commas.

specifies a scalar parameter

If more than one parameters are to be specified then
the parameters are to be separated by commas.

[paramarrayl([set]][,paramarray2[set],..] specifies a parameter array and the set over which

the array is defined

For more than one parameter array the entries are
to be separated by commas.

The easiest form to specify external data is $data. In this case a generic filename modelname.cdat will

be used and all sets and parameters that are defined in modelname.cdat will be read.

Examples:

%data myProblem.cdat

n set, aln]

reads the 1-tuple set n and the vector a which is
defined over the set n from the file myProblem.cdat

%data myProblem.cdat

reads all parameters and sets that are defined in the file
myProblem.cdat

$data : n set([l], aln]

reads (assuming a CMPL model name
myproblem2.cmpl) the 1-tuple set n and the vector
a which is defined over n from myProblem2.cdat.

sdata Assuming a CMPL model hame myproblem?.cmpl all
sets and parameters are to be read from myProb-
lem2.cdat.

sdata : routes set[2], costs[routes] |Assuming a CMPL model name myproblem.cmpl the 2-

tuple set routes and the matrix costs defined over
routes are to be read from myProblem.cdat.

CMPL v.1.12 - Manual

18

2.2 Parameter Expressions

2.2.1 Overview

Parameter expressions are rules for computing a value during the run-time of a CMPL programme.
Therefore a parameter expression generally cannot include a model variable. Exceptions to this include spe-
cial functions whose value depends solely on the definition of a certain model variable. Parameter expres-
sions are a part of an assignment to a parameter or are usable within the echo function. Assignments to a
parameter are only permitted within the parameters section or within a control structure. An expression
can be a single number or string, a function, a set or a tupel. Therefore only real, integer, binary, string, set
or tupel expressions are possible in CMPL. A parameter expression can contain the normal arithmetic opera-
tions.

2.2.2 Array functions

With the following functions a user may identify specific characteristics of an array or a single parameter or
model variable.

Usage:

max (expressions) #returns the numerically largest of a list of values

min (expressions) #returns the numerically smallest of a list of values

count (parameter|variable|parameterArray|variableArray)

#returns the count of elements or 0 if the parameter

#or the variable does not exist

expressions can be a list of numerical expressions separated by commas or can be a multi-
dimensional array of parameters

Examples:

all:= (1,2,5);

echo max(al[]); returns user message 5

echo min(al]l); returns user message 1

echo count (afl]) returns user message 3

echo count (afll]); returns user message 1

echo count(a[5]); returns user message 0

h t ;
echo count (al]) returns user message 3

bl,1:=((1,2,3,4), (2,3,4,5)); user messages:

echo count (b[1,]); 4 -4 elements in the first row

echo count(b[,1]); 2 -2 elements in the first column
echo count (b[,]); 8 -4 x 2 elements in the entire matrix
echo count (b[1,35]) 0 - parameter does not exist

CMPL v.1.12 - Manual 19

a := set([1,1]1,11,2]1,102,2],13,2]1): user messages:
bla] := (10, 20, 30 , 40);

echo "count : " + count(bla]); count : 4
echo "min : " + min(bla]); min : 10
echo "max : " + max(blal); max : 40

2.2.3 Set operations and functions

Set operations and functions can be used to manipulate sets, to create sets or to analyse the characteristics
of a set.

Usage:

set{ controlHeader : bodyExpressions };

#condition set (only for l-tupel sets)

setl + set2; #union set (only for l-tupel sets)

setl * set2; #intersection set

len(set) #count of the elements of the set - returns an integer
defset (array) #returns the set of the first free index of the array

#only useful for dense arrays

index << set #returns 1 - if the index is an element of the set
#returns 0 - otherwise
set *> [tuppelPattern] #Set pattern matching

/*Returns an n-tuple set consisting of unique

elements of the set set which match tuplePattern

in the order of their first appearance. */

set{controlHeader:bodyExpressions} Constructs a set consisting of the bodyexpressions that

satisfy the conditions in the controlHeader.

setl + set2 union of set1 and set2

setl * set2 intersection of set1 and set2

array array of parameters or model variables with at least one free
index.

set *> [tuppelPattern] Returns an n-tuple set consisting of unique elements of the

set set which match tuplePattern in order of their first
appearance.

CMPL v.1.12 - Manual 20

A tuplePattern have to be formulated in the form of a
tuple and has to have the same rank as the original set.

The following entries are allowed and to be separated by
commas.

*

all elements at the position of the indexing entry

/ ignore all elements at the position of the indexing

entry

string Or integer

A string or integer fixes the indexing entry at its

specific position. The fixed indexing entry will not be re-

turned by the set pattern matching expression. It is
also possible to use a parameter which is assigned a

string Or integer.

*string Or *integer
Fixes also the indexing entry at the specific position,
but returns the fixed indexing entry too.

Can also be understood as an intersection of two sets fol-
lowed by a rank reduction controlled by * or /.

Examples:
Sl = Set("a", "b", "C", "d") ;
82 . Set("a","e",llcll,"f"),.
s3 = sl + SZ,‘ s3 |SaSS|gned (uavv,vvbu,vvcvv,vvdvv,neu,nfn)
s4 := sl * s2; s4 isassigned ("a", "c")
s5 := set{i in 1..10, 1 mod 2 = 0: i}; s5 is assigned (2,4,6,8,10)
s6 := set{i in sl, ! (i << s2): i}; s6 is assigned ("b", "d")
a :=set([1,1],101,2],(02,2],[3,2]);
b := set([1,1],[4,41,12,21,1[3,7]1);
c := a * b; c isassigned theset ([1, 11, [2, 2])
a:= set(1, "a", 3, "b", 5, "c"); returns the user message
echo "length of the set: "+ len(a); length of the set: 6
A[r] = ((112/3/4/5)/
(1121314151617));
row := defset (A[,]);: row is assigned theset 1..2
col := defset(A[l,]); col is assigned theset 1..5

CMPL v.1.12 - Manual

21

a:: Set(1, "a", 3, "b", 5, "c"),.
echo "a" << a; returns the user message 1
echo 5 << a; returns the user message 1
echo "bb" << a; returns the user message 0
a :=set([1,1],([1,2]1,[2,2],1[3,2]):
echo len(a); returns the user message 4
echo [1,1] << a; returns the user message 1
echo [1,7] << a; returns the user message 0
a :=set([1,1],[1,2]1,[2,2],[3,2]):
b := [1..2, 1..2];
returns the user message
eChO a * b; Set([l, l]r [lr 2]! [21 2])
a :=set([1,1],([1,2],[2,2],[3,2]):
b :=1[.., 2];
returns the user message
eChO a * b; Set([l, 2]! [21 2]! [31 2])
b:=set ([1,1],[1,21,[1,4],(2,21,12,3],
(2,41, 03,11,03,31); displays the user messages:
echo b *> [*,/1; [1..3]
echo b *> [/,*]; [set(1, 2, 4, 3)]
echo b *> [*1,*]; set([1, 11, [1, 21, [1, 41)
echo b *> [1,*]; [set(1, 2, 4)]
i=set([1,1,11,11,2,21,12,2,51,13,2,21);: | .
c:i7se ([*]*[* It It 1 displays the user messages:
echo ¢ *> 1,7, set ([1, 11, [2, 21)
p:=2;
echo ¢ *> [*,p,*]; set ([1, 2], [2, 51, [3, 2])
eChO c *> [*I*pl*]; Set([lr 2! 2]! [2r 2! 5]! [31 2! 2])
echo ¢ *> [1,/,*]; [1..2]

2.2.4 Mathematical functions

In CMPL there are the following mathematical functions which can be used in expressions. Excluding div
and mod all these functions return a real value.

Usage:
p div g #integer division
p mod g #remainder on division
sqrt(x) #sgrt function
exp(x) #exp function
1In(x) #natural logarithm
1g(x) #common logarithm
1d(x) #logarithm to the basis 2

CMPL v.1.12 - Manual

22

srand(x)

rand(x)
sin(x)
cos(x)
tan(x)
acos(x)
asin(x)
atan(x)
sinh(x)
cosh(x)
tanh(x)
abs(x)
ceil(x)

floor(x)

round(x)

#Initialisation of a pseudo-random number generator using the
argument x. Returns the value of the argument x.

#returns an integer random number in the range 0<= rand <= x
#sine measured in radians

#cosine measured in radians

#tangent measured in radians

#arc cosine measured in radians

#arc sine measured in radians

#arc tangent measured in radians

#hyperbolic sine

#hyperbolic cosine

#hyperbolic tangent

#absolute value

#smallest integer value greater than or equal to a given value

#largest integer value less than or equal to a given value

#simple round

p, g integer expression
X real or integer expression
Examples:

value is:
cl[l] := sqgrt(36); 6.000000
c[2] := exp(10); 22026.465795
cl[3] := 1n(10); 2.302585
cl[4] := 1g(10000); 4.000000
c[5] := 1d(8); 3.000000
c[6] := rand(10); 7.000000 (random number)
c[7] := sin(2.5); 0.598472
c[8] := cos(7.7); 0.153374
c[9] := tan(10.1); 0.800789
c[10] := acos(0.1); 1.470629
c[11] := asin(0.4); 0.411517
c(1l2] := atan(1l.1); 0.832981
c[13] := sinh(10); 11013.232875
c[14] := cosh(3); 10.067662
c[1l5] := tanh(15); 1.000000
c[l6] := abs(-12.55); 12.550000
c[17] := ceil(12.55); 13.000000
c[18] := floor(-12.55); -13.000000
c[19] := round(1l2.4); 12.000000
c[20] := 35 div 4; 8
c[21] := 35 mod 4; 3
CMPL v.1.12 - Manual 23

2.2.5 Type casts

It is useful in some situations to change the type of an expression into another type. A set expression can
only be converted to a string. A string can only be converted to a numerical type if it contains a valid numer-
ical string. Every expression can be converted to a string.

Usage:

type(expression) #type cast

type Possible types are: real, integer, binary, string.
expression expression
Examples:
returns the user messages:
a = 6.666;
echo integer(a);
echo binary(a);
a:=0;
echo binary(a); 0
a := 6.6666;
echo string(a); 6.666600
b := 100;
echo real (b); 100.000000
echo binary(b); 1
b := 0;
echo binary(b); 0
b:= 100;
echo string(b); 100
c :=1;
echo real(c); 1.000000
echo integer(c); 1
echo string(c); 1
e := "1.888";
echo real (e); 1.888000
echo integer (e);
echo binary(e);
e = "";
echo binary(e); 0

2.2.6 String operations

Especially for displaying strings or numbers with the echo function there are string operations to concatenate
and format strings.

CMPL v.1.12 - Manual 24

Usage:

expression + expression #concat strings if one expression

#has the type string

format(formatString, expression) #converts a number into a
#string using a format string
len(stringExpression) #length of a string
type (expression) freturns the type of the expression

#as a string

expression expression which is converted to string
Cannot be a set expression. Such an expression must be converted to a string
expression by a type cast

formatString a string expression containing format parameters

CMPL uses the format parameters of the programming language C++. For fur-
ther information please consult a C++ manual.

Usage format parameters:

$<flags><width><.precision>specifier

specifier

d integer

f real

S string

flags

- left-justify

+ Forces the result to be preceded by a plus or minus sign (+ or -) even for positive numbers.
By default only negative nhumbers are preceded with a - sign.

width

(number) Minimum number of characters to be printed. If the value to be printed is shorter than this

number, the result is padded with blank spaces. The value is not truncated even if the result
is larger.

The width is not specified in the format string, but as an additional integer value argument
preceding the argument that has to be formatted.

CMPL v.1.12

- Manual 25

.precision

.number For integer specifiers d: precision specifies the minimum number of digits to be written. If the
value to be written is shorter than this number, the result is padded with leading zeros. The
value is not truncated even if the result is longer. A precision of 0 means that no character is
written for the value 0.

For f: this is the number of digits to be printed after the decimal point.

For s: this is the maximum number of characters to be printed. By default all characters are
printed until the ending null character is encountered.

When no precision is specified, the default is 1. If the period is specified without an explicit
value for precision, 0 is assumed.

¥ The precision is not specified in the format string, but as an additional integer value argument
preceding the argument that has to be formatted.

Examples:

a:=66.77777;

echo type(a)+ " " + a + " to string|returns the user message

" + format ("%$10.2f", a); real 66.777770 to string 66.78

If you would like to display an entire set concatenating with a string, then you have to use a string cast of
your set.

Example:

s:= set(7, "qwe", 6, "fe", 5, 8); |returns the user message
echo "set is " + string(s); set is set(7, "gqwe", 6, "fe", 5, 8)

2.3 Input and output operations

The CMPL input and output operations can be separated into message function, a function that reads the ex-
ternal data and the include statement that reads external CMPL code.

2.3.1 Error and user messages

Both kinds of message functions display a string as a message. In contrast to the echo function an error
message terminates the CMPL programme after displaying the message.

Usage:
error expression; #error message - terminates the CMPL programme
echo expression; #user message

expression A message that is to be displayed. If the expression is not a string it will be auto-
matically converted to string.

CMPL v.1.12 - Manual 26

Examples:

{a<0: error "negative value"; } If a is negative an error message is displayed and
the CMPL programme will be terminated.

echo "constant definitions finished"; A user message is displayed.

{ 1:=1(1)3: echo "value:" + i;} The following user messages are displayed:
value: 1
value: 2
value: 3

2.3.2 cmplData files

A cmplData file is a plain text file that contains the definition of parameters and sets with their values in a
specific syntax. The parameters and sets can be read into a CMPL model by using the CMPL header argu-
ment $data.

Usage:
$name < numberOrString > # scalar parameter
%name set[[rank]] < setExpression > # set definition

%name [set] [= default] [indices] < 1istOfNumbersOrStrings >

parameter array

#text # comments

Excluding comments each cmplData definition starts with <.

$name < numberOrString > a scalar parameter name is assigned a single string or num-
ber

$name set[[rank]] < setExpression > definition of an n-tuple set

A set definition starts with the name followed by the
keyword set. For n-tuple sets with n>1 the rank of the set
is to be specified enclosed by square brackets.

For enumeration sets the entries of the sets are separated
by white spaces and imbedded in angle brackets. It is also
possible to define algorithmic sets in normal CMPL syntax.

%name [set] [= default] [indices] definition of a parameter array

< 1istOfNumbersOrStrings > o .
The specification of a parameter array starts with the name

followed by one or more sets, over which the array is
defined. If more than one set is used then the sets have to
be separated by commas.

CMPL v.1.12 - Manual 27

Examples:

The set or sets have to be defined before the parameter
definition.

If the data entries are specified by their indices (keyword
indices) then a default value can be defined.

The data entries can be strings or numbers and have to be
separated by white spaces and imbedded in angle brackets.

If the data entries are specified by their indices then each
data entry has to start with the indices followed by the
value and separated by white spaces.

If not so then the order of the elements are given by the
natural order of the set or sets.

%a < 10 >

Defines a scalar parameter a and assigns the
number 10.

$s set < 0..6 >
%$s set < 0..6 >

s is assigned s€(0,1,...,6)

$s set < 10(-2)4 >

s is assigned s€(10,8,6,4)

$prod set < bikel bike2 >
%prod set < "bike 1" "bike 2" >

1-tuple enumeration set of strings

%a set< 1 a 3 b 5 c >
$x[a] < 10 20 30 40 50 60 >

1-tuple enumeration set of strings and integers
vector x identified by the set a is assigned an in-
teger vector

$data : a set, x[a]
parameters:

echo x[1];

echo x["a"];

{i in a: echo x[i];}

reads the set a and the vector x into a CMPL
model

The following user messages are displayed:
10

20

10 20 30 40 50 60

%$n set < 1..3 >
$m set < 1..3 >

defines a 3x3 identity matrix

%$aln,m] = 0 indices < 111
2 21
331>
¥x set < 1..2 >
%y set < 1..2
%z set < 1..2 >

definition of a data cube with the dimension

XyYrZ

CMPL v.1.12 - Manual

28

Scube[x,vy,z] <1 2 3450678 >

x y z value
1 1 11
11 2 2
1 2 1 3
1 2 2 4
21 15
21 2 6
2 2 1 7
2 2 2 8

%data : x set, y set, z set, cubelx,y,z]

parameters:
{i in %, 7 in y, k in z:

echo i+","+3+","+k+":"+cube[i,],k];

reads the sets x, y, z and the cube into a CMPL
model

The following user messages are displayed:
1,1,1:
1,1,2:
1,2,1:
1,2,2:
2,1,1:
2,1,2:
2,2,1:
2,2,2:

O ~J o b W N

%cube([x,y,z] = 0 indices < 1 1 1 1
2221 >

defines the following data cube

$x set[3] <

NN N R R e e
S I O N S
NR N RN RN R

Scube[x] <1 2 3 456 78>

x y z value
11 1 1
1 1 20
1 2 10
1 2 20
21 10
21 20
22 10
2 2 21
cube defined over a 3-tuple set
x y z value
1 1 11
11 2 2
1 2 13
1 2 2 4
21 15
21 2 6
2 2 1 7
2 2 2 8

CMPL v.1.12 - Manual 29

%data : x set[3], cubelx] reads the 3-tuple set x and cube
parameters: The following user messages are displayed:
{i in x: echo i +":"+cube[i]; } (1, 1, 171:1
[1, 1, 21:2
(1, 2, 11:3
[1, 2, 2]:4
(2, 1, 11:5
[2, 1, 21:6
(2, 2, 11:7
[2, 2, 2]1:8
sx set[3) <111 112 121 122 data cube defined over x
211 212 221 222 >
%cube[x] = 0 indices < 1111 x y z value
2221 > 1 1 11
1 1 2 0
1 2 10
1 2 2 0
21 10
21 2 0
22 10
2 2 21
sroutes set[2] < pl cl defines a 2-tuple set routes and a matrix c
pl c2 that is defined over routes
pl c4
p2 c2
p2 c3
p2 c4
p3 cl
p3 c3 >
$c[routes] <3 2 6 5 2 3 2 4 >
$data : routes set[2], c[routes] reads the 2-tuple set routes and the matrix c
into a CMPL model
parameters: The following user messages are displayed:
{i in routes: echo i + " : "+ c[i];} ["pl", "cl"] : 3
["pl", "c2"] 2
["pl", "c4"] 6
["p2", "c2"] : 5
["p2", "c3"] : 2
["p2", "c4"] 3
["p3", "cl"] 2
["p3", "c3"] 4

CMPL v.1.12 - Manual 30

2.3.3 Readcsv and readstdin

CMPL has two additional functions that enable a user to read external data. The function readstdin is de-
signed to read a user's numerical input and assign it to a parameter. The function readcsv reads numerical
data from a CSV file and assigns it to a vector or matrix of parameters. For a vector with a length n to be
read into a CMPL model the data in the CSV file can be organized as one row with n elements or n rows with
one element. But in CMPL this vector is always a column vector.

Usage:
readstdin (message) ; #returns a user numerical input
readcsv (fileName) ; #reads numerical data from a csv file

#for assigning these data to an array

message string expression for the message that is to be displayed

fileName string expression for the file name of the CSV file (relative to the directory in
which the current CMPL file resides)
In CMPL CSV files that use a comma or semicolon to separate values are permit-
ted.

Example:
a := readstdin("give me a number"); reads a value from stdin to be used as value for a.

Only recommended when using CMPL as a command
line interpreter.

The following example uses three CSV files:

1 c.csv
2
3
5.6;7.7;10.5 a.csv
9.8;4.2;11.1
15;20 b.csv
parameters: Using readcsv CMPL generates the
cl] := readcsv("c.csv"); following model:
b[] := d "b.csv");
[readesv (csv) I-x,+2-x,+3-x;—>max !
A[,] := readcsv("a.csv"); y
S.1.
variables:
5.6:x,+7.7-x,+10.5-x,<15
x[defset(c[])]: real[0..];

9.8-x,+4.2-x,+11.1-x,<20
x;20;7=1(1)3

objectives:

c[]T * x[]->max;
constraints:

Al,] * x[] <= DbI[];

CMPL v.1.12 - Manual 31

2.3.4 Include

Using the include directive it is possible to read external CMPL code in a CMPL programme. The CMPL
code in the external CMPL file can be used by several CMPL programmes. This makes sense for sharing basic
data in a couple of CMPL programmes or for the multiple use of specific CMPL statements in several CMPL
programmes. The include directive can stand in any position in a CMPL file. The content of the included
file is inserted at this position before parsing the CMPL code. Because include is not a statement it is not
closed with a semicolon.

Usage:

include "fileName" #include external CMPL code

fileName file name of the CMPL file (relative to the directory in which the current CMPL file
resides)

Note that rileName can only be a literal string value. It cannot be a string ex-
pression or a string parameter.

The following CMPL file "const-def.gen" is used for the definition of a couple of parameters:

cll := (1, 2, 3); const-def.gen
b[] := (15, 20);
Al,] == ((5.6, 7.7, 10.5),
(9.8,4.2,11.1));
parameters: Using the include statement CMPL generates the
include "const-def.cmpl" following model:
. L-x,+2-x,+ 3-x; > max !
variables:
x[defset(c[])]: real[0..]; S.L

5.6-x,+7.7-x,+#10.5-x,<15
9.8 x,+42-x,+11.1-x,<20
x,z20;j=1(1)3

objectives:

cl[]T * x[] -> max;
constraints:

Al,] * x[] <= DbIll;

2.4 Statements

As mentioned earlier, every CMPL programme consists of at least one of the following sections: paramet-
ers:, variables:, objectives: and constraints:. Each section can be inserted several times and
mixed in a different order. Every section can contain special statements. Every statement finishes with a
semicolon.

CMPL v.1.12 - Manual 32

2.4.1 parameters and variables section

Statements in the parameters section are assignments to parameters. These assignments define paramet-

ers or reassign a new value to already defined parameters. Statements in the variables sections are
definitions of model variables.

All the syntactic and semantic requirements are described in the chapters above.

2.4.2 objectives and constraints section

In the objectives and constraints sections a user has to define the content of the decision model in
linear terms. In general, an objective function of a linear optimisation model has the form:

¢, X, +cyx, 4. +c,-x, = max! (ormin!)
with the objective function coefficient C; and model variables X; . Constraints in general have the

form:
k”'xl+k12'X2+...+k]n'xn S b]
ko x thyx,+...+k,-x, <

k, x+tk ,x,+.+k -x < b

m

with constraint coefficients k; and model variables X

An objective or constraint definition in CMPL must use exactly this form or a sum loop that expresses this
form. A coefficient can be an arbitrary numerical expression, but the model variables cannot stand in expres-
sions that are different from the general form formulated. The rule that model variables cannot stand in
bracketed expressions serves to enforce this.

Please note, it is not permissible to put model variables in brackets!

The example (a and b are parameters, x and y model variables)
a*x + a*y + b*x + b*y

can be written alternatively (with parameters in brackets) as:

(a + b)*x + (a + b)*y

but not (with model variables in brackets) as:

a*(x + y) + b*¥(x + vy)

For the definition of the objective sense in the objectives section the syntactic elements ->max or ->min
are used. A line name is permitted and the definition of the objective function has to have a linear form.

CMPL v.1.12 - Manual 33

Usage of an objective function:

objectives:

[l1ineName:] linearTerm =>max|->min;

lineName optional element
description of objective

linearTerm definition of linear objective function

The definition of a constraint has to consist of a linear definition of the use of the constraint and one or two
relative comparisons. Line names are permitted.

Usage of a constraint:

constraints:

[1ineName:] linearTerm <=|>=|= linearTerm [<=|>=|= linearTerm];

lineName optional element
description of objective

linearTerm linear definition of the left-hand side or the right-hand side of a constraint

2.5 Control structure

2.5.1 Overview

A control structure is imbedded in { } and defined by a header followed by a body separated off by :.

General usage of a control structure:

[controlName] | [sum|set] { controlHeader : controlBody }

A control structure can be started with an optional name for the control structure. In the objectives and

in the constraints section this name is also used as the line name.

It is possible to define different kinds of control structures based on different headers, control statements
and special syntactical elements. Thus the control structure can used for for loops, while loops, if-then-else
clauses and switch clauses. Control structures can be used in all sections.

A control structure can be used for the definition of statements. In this case the control body contains one
or more statements which are permissible in this section.

CMPL v.1.12 - Manual 34

It is also possible to use control structures for sum and set as expressions. Then the body contains a single
expression. A control structure as an expression cannot have a name because this place is taken by the
keyword sum or set. Moreover a control structure as an expression cannot use control statements because
the body is an expression and not a statement.

2.5.2 Control header

A control header consists of one or more control headers. Where there is more than one header, the head-
ers must be separated by commas. Control headers can be divided into iteration headers, condition head-
ers, local assignments and empty headers.

2.5.2.1 Iteration headers

Iteration headers define how many repeats are to be executed in the control body. Iteration headers are
based on sets.

Usage:

localParam in set # iteration over a set

localParam name of the local parameter

set The defined local parameter iterates over the elements of the set and the body is
executed for every element in the set.

Examples:

Sl += Set("a","b","C","d");

{k in s1: ..} k is iterated over all elements of the set s1

s2 := 1(1)10;

{k in s2: . } x is iterated over the set k€(1,2,...,10}

s3 = 2..6;

{k := s3: .. } k is iterated over the set k€(2,3,...,6]

a :=set([1,1],[1,2]1,12,2],103,2]); k is iterated over the 2-tuple set a

{ k in a : .. }

a :=set([1,1],[1,2],12,21,1(3,2]1); 2-tuple index [i, 7 is iterated over the 2-tuple set

{ [1,J] in a : ..} a

2.5.2.2 Condition headers

A condition returns 1 (True) or 0 (False) subject to the result of a comparison or the properties of a para-
meter or a set. If the condition returns 1 (True) the body is executed once or else the body is skipped.

CMPL v.1.12 - Manual 35

Comparison operators for parameters:

4

<>, 1=

equality

inequality

less than

greater than

equal to or less than
equal to or greater than

equality

tests whether the iteration order of two sets is equal
inequality

tests whether the iteration order of two sets is not equal
subset or not equal (only for 1-tuple sets)

greater than (only for 1-tuple sets)

subset or equal (only for 1-tuple sets)

equal to or greater than (only for 1-tuple sets)

Logical operators:

&&
I

!

AND
OR
NOT

If a real or integer parameter is assigned 0, the condition returns 0

(false). Alternatively if the parameter

is assigned 1 the condition returns 1 (true).

Examples:

i:=1;

Jj:=2;

{(i>3 : ..} condition is false

{(r(i>g) : ..} condition is true

{('i 11 3=2 : .} condition is true

{11 && §=2 : .. } condition is false (! 1i is false, because i is not 0)

2.5.2.3 Local assignments

A local assignment as control header is useful if a user wishes to make several calculations in a local envir-

onment. Assigning expression to a parameter within the constraints section is generally not allowed with

the exception of a local assignment within a control structure. The body will be executed once.

CMPL v.1.12 - Manual

36

Usage:

localParam := expression # assignment to a local parameter

localParam Defines a local parameter with this name.

expression Expression which is assigned to the local parameter.

Examples:

constraints: k is assigned 1 and used as local parameter within the
{ ke=1 : ..} control structure.

2.5.3 Alternative bodies

If @ control header consists of at least one condition, it is possible to define alternative bodies. Structures
like that make sense e.qg. if a user wishes to combine a for loop with an if-then clause.

The first defined body after the headers is the main body of the control structure. Subsequent bodies must
be separated by the syntactic element |. Alternative bodies are only executed if the main body is skipped.

Usage:

{ controlHeader: mainBody [| conditionl: alternativeBodyl]
[| ...] [| default: alternativeDefaultBody] }

controlHeader header of the control structure including at least one condition
The alternative bodies belong to last header of control header. This header
cannot be an assignment of a local parameter, because in this case the
main body is never skipped.

mainBody main body of control structure

conditionl Will be evaluated if alternative body is executed.

alternativeBodyl The first alternative body with a condition that evaluates to true is ex-
ecuted. The remaining alternative bodies are skipped without checking the
conditions.

alternativeDefaultBody If no condition evaluates to true then the alternative default body is ex-
ecuted. If the control structure has no alternative default body, then no
body is executed.

CMPL v.1.12 - Manual 37

2.5.4 Control statements

It is possible to change or interrupt the execution of a control structure using the keywords continue,
break and repeat. A continue stops the execution of the specified loop, jumps to the loop header and
executes the next iteration. A break only interrupts the execution of the specified loop. The keyword re-
peat starts the execution again with the referenced header.

Every control statement references one control header. If no reference is given, it references the innermost
header. Possible references are the name of the local parameter which is defined in this head, or the name
of the control structure. The name of the control structure belongs to the first head in this control structure.

Usage:

continue [reference];

break [reference];

repeat [reference];

reference a reference to a control header specified by a name or a local parameter

break [reference] The execution of the body of the referenced head is cancelled. Remaining
statements are skipped.

If the referenced header contains iteration over a set, the execution for the
remaining elements of the set is skipped.

continue [reference] The execution of the body of the referenced head is cancelled. Remaining
statements are skipped.

If the referenced header contains iteration over a set, the execution is contin-
ued with the next element of the set. For other kinds of headers continue is
equivalent to break.

repeat [reference] The execution of the body of the referenced header is cancelled. Remaining
statements are skipped.

The execution starts again with the referenced header. The expression in this
header is to be evaluated again. If the header contains iteration over a set,
the execution starts with the first element. If this header is an assignment to
a local parameter, the assignment is executed again. If the header is a condi-
tion, the expression is to be checked prior to execution or skipping the body.

CMPL v.1.12 - Manual 38

2.5.5 Specific control structures

2.5.5.1 For loop

A for loop is imbedded in { } and defined by at least one iteration header followed by a loop body separ-
ated off by :. The loop body contains user-defined instructions which are repeatedly carried out. The num-
ber of repeats is based on the iteration header definition.

Usage:

{ iterationHeader [, iterationHeaderl] [, ...] : controlBody }

iterationHeader defined iteration headers

iterationHeaderl

controlBody CMPL statements that are executed in every iteration

Examples:

{1in 1(1)3 = ...} loop counter i with a start value of 1, an increment of 1

and an end condition of 3

{1iin 1..3 ¢ ...} alternative definition of a loop counter; loop counter i
with a start value of 1 and an end condition of 3. (The in-
crement is automatically defined as 1)

products:= set("pl", "p2", "p3");

hours[products] :=(20,55,10);
{i in products: for loop using the set products returns
eCho."hourS of prOduCt. o user messages hours of product: pl : 20
i+ %+ "+ hours[ily hours of product: p2 : 55
J hours of product: p3 : 10
{i in 1(1)2: definesa[1,2] = 3,A[1,4] = 5,A[2,2] = 4and
{J in 2(2)4: A[i,3] =1 + J3; } |A[2,4] = 6
}
a := set([1,1],1[1,2],102,2],13,2]); |k isiterated over the 2-tuple set a
bfa] := (10, 20, 30 , 40);
The following user messages are displayed:
{ k in a : echo k + ":"+ b[k] ;} [1, 11:10
[1, 2]1:20
[2, 2]1:30
[3, 2]:40

Several loop heads can be combined. The above example can thus be abbreviated to:
{1 in 1(1)2, J in 2(2)4: defines A[1,2] = 3, A[l,4] = 5, A[2,2] = 4
Ali,3] =1 + 35 andA[2,4] = 6

CMPL v.1.12 - Manual 39

{1 in 1(1)5, Jj in 1(1)i: definition of a triangular matrix
A[l/j] =1+ j;

2.5.5.2 If-then clause

An if-then consists of one condition as control header and user-defined expressions which are executed if
the if condition or conditions are fulfilled. Using an alternative default body the if-then clause can be exten-
ded to an if-then-else clause.

Usage:

{ condition: thenBody [| default: elseBody]}

condition If the evaluated condition is true, the code within the body is executed.

thenBody This body is executed if the condition is true.

elseBody This body is executed if the condition is false.

Examples:

{i := 1(1)5, j := 1(1)5:
{i =73: Ali,J] :=1;} definition of the identity matrix with combined loops
{i 1=3: Ali,3] := 0; } and two if-then clauses

}

{1 := 1(1)5, § := 1(1)5
{1 =73 Ali,J] :=1; | same example, but with one if-then-else clause
default: A[i,3] := 0; }

}

i:=10; example of an if-then-else clause

{ 1<10: echo "i less than 10"; returns user message i greater than 9
| default: echo "i greater than 9";

}

sum{ i = 3j : 1 | default: 2 } conditional expression, evaluates to 1 if i = 5, oth-

erwise to 2

2.5.5.3 Switch clause

Using more than one alternative body the if-then clause can be extended to a switch clause.

Usage:

{ conditionl: bodyl [| conditionZ2: bodyZ2>] [| ...] [| default: defaultBody]}

CMPL v.1.12 - Manual 40

If the first condition returns TRUE, only body1 will be executed. Otherwise the next condition condi-
tionl will be verified. body2 is executed if all of the previous conditions are not fulfilled. If no condition
returns true, then the defaultBody is executed.

Example:
i:=2; example of a switch clause
i=1l: echo "i equals 1"; returns user message i equals 2
| 1i=2: echo "i equals 2";
| 1i=3: echo "i equals 3";
| default: echo "any other wvalue";
}

2.5.5.4 While loop

A while loop is imbedded in {
by :
peatedly carried out until the condition in the loop header is false.

} and defined by a condition header followed by a loop body separated off
and finished by the keyword repeat. The loop body contains user-defined instructions which are re-

Usage:

{ condition : statements repeat; }

condition

If the evaluated condition is true, the code within the body is executed. This re-
peats until the condition becomes false.

statements one or more user-defined CMPL instructions
To prevent an infinite loop the statements in the control body must have an im-
pact on the condition.
Examples:
i:=2; while loop with a global parameter
{lj_:[éli:] _ i Can only be used in the parameters section, because
i oi= i41; the assignment to a global parameter is not permitted in
repeat ; other sections.
} defines a[2] = 2, A[3] = 3 andAa[4] = 4
{a := 1, a < 5: while loop using a local parameter
echo a;
4 imoa+ 1 returns user messages 1
repeat; é
} 4
{a:=1: Alternative formulation:
xx The outer control structure defines the local parameter a.
echo aj This control structure is used as a loop with a defined
ai=atl; name and an empty header. The name is necessary, be-

CMPL v.1.12 - Manual

41

{a>=4: break xx;} cause it is needed as reference for the break statement

repeat; in the inner control structure. (Without this reference the

break statement would refer to the condition a>=4)

2.5.6 Set and sum control structure as expression

Starting with the keyword sum or the keyword set a control structure returns an expression. Only expres-
sions are permitted in the body of the control structure. Control statements are not allowed, because the
body cannot contain a statement. It is possible to define alternative bodies.

Usage:

sum { controlHeader : bodyExpressions }

set { controlHeader : bodyExpressions }

controlHeader header of the control structure
The header of a sum or a set control structure is usually an iteration header,
but all kinds of control header can be used.

bodyExpressions user-defined expressions

A sum expression repeatedly summarises the user-defined expressions in the bodyExpressions. If the
body is never executed, it evaluates to 0. A set expression returns a set subject to the controlHeader
and the bodyExpressions. The element type included in bodyExpressions must be integer or string.
Please note that the set expression only works for 1-tuple sets.

Examples:

x[1..3] = (2, 4, 6);

a := sum{i := 1(1)3 : x[i] }; a is assigned 12

products:= set("pl", "p2", "p3");

hours[products] :=(20,55,10) ;

totalHours:= sum{i in products: hours[i] }; totalHours is assigned 85

x[1..3,1..2]:=((1,2),(3,4),(5,6)); sum with more than one control header

b:= sum{i := 1(1)3, J := 1(1)2: x[1i,7]] b b is assigned 21.

s:=set(); sums up all elements in the set s.

d:= sum{i in s: i |default: -1 }; Since s is an empty set, d is assigned to
the alternative default value -1.

a :=set([1,1],I[1,2]1,12,2],(3,2]) calculates a sum over all elements in b

bfa] := (10, 20, 30 , 40); which is defined over the 2-tuple set a.
c is assigned 100.

c := sum{ k in a : blk]};

CMPL v.1.12 - Manual 42

e:= set{i:= 1..10: 1i"2 }; e is assigned the set
(1, 4, 9, 16, 25, 36, 49, 64,
81, 100)

H
I

set{i:= 1..100, round(sqrt(i))"2 = i: i }; |fis assigned the set
(1, 4, 9, 16, 25, 36, 49, 64,

81, 100)

The sum expression can also be used in linear terms for the definition of objectives and constraints. In this
case the body of the control structure can contain model variables.

Examples:

parameters:
afl..z2,1..31 :=((1,2,3),(4,5,6));
b[1l..2] := (100,100);
c[l..3] := (20,10,10);

variables:

x[1..3]: real[0..];

objectives: objective definition using a sum
sum{j:=1..3: c[]J] *x[]]}->max; 20-x,+ 10-x,+ 10-x; = max !
constraints:
{ i:=1..2: constraints definition using a sum

sum{j:=1..3: afi,j] * x[J]}<= b[i]; 1-x,+ 2-x,+ 3-x;<100

4-x,+ 5 x,+ 6:x,<100

2.6 Matrix-Vector notations

CMPL allows users to define objectives and constraints in a matrix-vector notation (e.g. matrix vector multi-
plication). CMPL generates all required rows and columns automatically by implicit loops.

Implicit loops are formed by matrices and vectors, which are defined by the use of free indices. A free index
is an index which is not specified by a position in an array. It can be specified by an entire set or without any
specification. But the separating commas between indices must in any case be specified. A multidimensional
array with one free index is always treated as a column vector, regardless of where the free index stands. A
column vector can be transposed to a row vector with T. A multidimensional array with two free indices is al-
ways treated as a matrix. The first free index is the row, the second the column. Implicit loops are only pos-
sible in the objectives section and the constraints section.

Please note that matrix-vector notations only works for arrays which are defined over 1-tuple sets.

Usage:

vector[[set]] #column vector

CMPL v.1.12 - Manual 43

matrix[index,

matrix[[set],

matrix[index,

matrix[[set],

matrix[[setl],

vector[[set]]T

[set]]

index]

[set]]T

index]T

[set2]]

ftranspose of column vector - row vector

#column vector

#also column vector

#transpose of column vector - row vector
#transpose of column vector - row vector

#matrix

vector, matrix

name of a vector or matrix

index a certain index value
[set] optional specification of a set for the free index
Examples:
x[] vector with free index across the entire defined area
x[2..5] vector with free index in the range 2 - 5
Al,] matrix with two free indices
All,] matrix with one fixed and one free index; this is a column vector.
Al,1] matrix with one fixed and one free index; this is also a column vector.

The most important ways to define objectives and constraints with implicit loops are vector-vector multiplica-
tion and matrix-vector multiplication. A vector-vector multiplication defines a row of the model (e.g. an ob-
jective or one constraint). A matrix-vector multiplication can be used for the formulation of more than one

row of the model.

Usage of multiplication using implicit loops :

paramVector[[set]]T * varVector[[set]]

varVector|[[set]]T * paramVector|[[set]]

#vector-vector multiplication

#vector-vector multiplication

paramMatrix[[setl], [set2]] * varVector][[set2]]
#matrix-vector
varVector[[setl]]T * paramMatrix[[setl], [set2]]

#matrix-vector

multiplication

multiplication

paramVector name of a vector of parameters
varVector name of a vector of model variables
paramMatrix name of a matrix of parameters

T syntactic element for transposing a vector
Examples:

CMPL v.1.12 - Manual

44

parameters:

all..2,1..3] :=((1,2,3),

(4,5,6));

b[1l..2] := (100,100);

c[1..3] := (20,10,10);
variables:

x[1..3]: real[0..];

objectives:

objective definition using implicit loops

c[IT * x[] ->max; 20-x,+10-x,+10-x, > max !
constraints: constraint definition using implicit loops
al, 1 * x[] <=bl];

l'xl+2'X2+3'X3S100
4-x,+5x,+6-x,<100

Aside from vector-vector multiplication and matrix-vector multiplication vector subtractions or additions are
also useful for the definition of constraints. The addition or subtraction of a variable vector adds new co-
lumns to the constraints. The addition or subtraction of a constant vector changes the right side of the con-

straints.

Usage of additions or subtractions using implicit loops:

linearTerms + varVector|[[set]]

linearTerms - varVector|[[set]]

linearTerms + paramVector|[[set]]

linearTerms - paramVector|[[set]]

#variable vector addition

#variable vector subtraction

#parameter vector addition

#parameter vector subtraction

linearTerms other linear terms in an objective or constraint
Examples:
parameters:
all..2,1..3] :=((1,2,3),
(4,5,6)):
b[1l..2] := (100,100);
d[1..2] := (10,10);
cl[1..3] := (20,10,10);
variables:
x[1..3]: real[O0..];
objectives:
cl[]T * x[] ->max;
constraints: constraints definition using implicit loops
al,] * x[] + d[] <=bl]; 1-x,+ 2-x,+ 3-x;<90
4-x,+ 5 x,+ 6:x;<90
equivalent to
al,] * x[] <=bl[] - dIll;

CMPL v.1.12 - Manual

45

0 <= x[1..3]1+yI[1..31+2[2]<= DbI[1..3]; |implicit loops for a column vector
0 <= x[1] + yI[1] + z[2] <= DbI[1]; equivalent formulation
0 <= x[2] + yI[2] + z[2] <= Db[2];
0 <= x[3] + y[3] + z[2] <= DbI[3];
parameters:
all..2,1..3] :=((1,2,3),
(4,5,6));
b[1..2] := (100,100);
d[l..2] := (10,10);
c[l..3] := (20,10,10);
variables:
x[1..3]: real[O0..];
z[1..2]: real[O..];
objectives:
cl[]T * x[] ->max;
constraints: constraints definition using implicit loops
al,] * x[] + z[] <=b[]; 1-x,+ 2:x,+ 3x; +2z, <90
4-x,+ 5 x,+ 6-x, +z, =90

2.7 Automatic model reformulations

2.7.1 Overview

CMPL includes two types of automatic code generation which release the user from additional modelling
work. CMPL automatically optimizes the generated model by means of matrix reductions. The second type of
automatic code reformulations is the equivalent transformation of variable products.

2.7.2 Matrix reductions

Matrix reductions are subject to constraints of a specific form.

a) If a constraint contains only one variable or only one of the variables with a coefficient not equal to
0, then the constraint is taken as a lower or upper bound.

sum{i

:=1(1)2:

(i-1) *

x[1i]}

<=

For the following summation (x[] is a variable vector)

10;

no matrix line is generated; rather x[2] has an upper bound of 10.

b) If there is a constraint in the coefficients of all variables proportional to another constraint, only the

more strongly limiting constraint is retained.

Only the second of the two constraints (x [] is a variable vector)

CMPL v.1.12 - Manual

46

2*x[1] + 3*x[2] <= 20;
10*x[1] + 15*x[2] <= 50;

is used in generating a model line.

Matrix reductions are switched off by default, but can be enabled by the command line argument —gn.

2.7.3 Equivalent transformations of Variable Products

A product of variables cannot be a part of an LP or MIP model, because such a variable product is a non-lin-
ear term. But if one factor of the product is an integer variable then it is possible to formulate an equivalent
transformation using a set of specific linear inequations. [cf. Rogge/Steglich (2007)] The automatic genera-
tion of an equivalent transformation of a variable product is a unique characteristic of CMPL.

2.7.3.1 Variable Products with at least one binary variable

A product of variables with at least one binary variable can be transformed equivalently in a system of linear
inequations as follows (Rogge and Steglich 2007, p. 25ff.) :

w:=u-v, u<u<u (u real or integer), v€|0,1]

is equivalent to

u real or integer, vE}iO,l} and
UVEW=SU-Y
u(l—v)<u—w=<u-(1—-v)

CMPL is able to perform these transformations automatically. For the following given variables

variables: x: binary;
y: real[YU..YO];

each occurrence of the term x*y in the CMPL model description is replaced by an implicit newly-defined
variable x vy, and the following additional statements are generated automatically:

constraints:
min (YU, 0) <= x y <= max(YO, 0);
{YU < 0: x y — YU*x >= 0; }
{YO > 0: x y — YO*x <= 0; }
y - Xy + YU*x >= YU;
y — X y + YO*x <= YO;

2.7.3.2 Variable Product with at least one integer variable

It is also possible to formulate an equivalent system of linear in-equation for products of variables with at
least one integer variable (Rogge and Steglich 2007, p. 28ff.):

CMPL v.1.12 - Manual 47

wi=u-v,
u<u<u, (u real or integer, if u integer then v—v
v<v<v (v integer)

is equivalent to

u real or integer and

d
v=v+) 2y, v<v, withd=[ld[v—v+1]]-1
j=0

j=0
Uy;<w;<uy,
g-(l—yj)Su—ijﬁ (l—yj)

y €01, j=0(1)d

<u—1u),

CMPL is able to perform these transformations automatically as described above. For the following given

variables
variables: x: integer[XU..XO];
y: real[YU..YO];

each occurrence of the term x*vy in the CMPL model
variable x_y, and the following additional statements
number of binary positions needed for x0-xU+1):

description is replaced by an implicit newly-defined
are generated automatically (here d stands for the

variables:
_x[1..d]:
x yl[l..d]:

binary;

real;

constraints:

min (XU*YU, XU*YO, XO*YU, XO*Y0) <= x y <=

max (XU*YU, XU*YO, XO*YU, XO*YO) ;

x = XU + sum{i=1(1)d: (2~(i-1))* x[i]};
x y = XU*y + sum{i=1(1)d: (2"(i-1))* x y[il};
{1 = 1(1)d:
min (YU, 0) <= x y[i] <= max(YO, 0);
{YU < 0: x y[i] - YU* x[i] >= 0; }
{YO > 0: x y[i] - YO* x[i] <= 0; }
y - X y[i] + YU* x[i] >= YU;
y - x y[i] + YO* x[i] <= YO;
}
CMPL v.1.12 - Manual 48

2.8 Examples

2.8.1 Selected decision problems

2.8.1.1 The diet problem

The goal of the diet problem is to find the cheapest combination of foods that will satisfy all the daily nutri-
tional requirements of a person for a week.

The following data is given (example cf. Fourer/Gay/Kernigham 2003, p. 27ff.) :

food cost per provision of daily vitamin requirements in percentages
package
A Bl B2 C

BEEF 3.19 60 20 10 15
CHK 2.59 8 2 20 520
FISH 2.29 8 10 15 10
HAM 2.89 40 40 35 10
MCH 1.89 15 35 15 15
MTL 1.99 70 30 15 15
SPG 1.99 25 50 25 15
TUR 2.49 60 20 15 10

The decision is to be made for one week. Therefore the combination of foods has to provide at least 700%
of daily vitamin requirements. To promote variety, the weekly food plan must contain between 2 and 10
packages of each food.

The mathematical model can be formulated as follows:

319 Xpppr+2.59 X cpx +2.29X gy +2.89 X 110+ 1.89 % ey + 1.99- X 4y #1.99 X oo +2.49 - X > min !
S.t.

60X prprt 8 X+ 8 X gy 40X 1140+ 15X 1+ 70X 31 +25 X gpg +60- X 1, <700

20X prprt 0 X e ¥10° X g 40X 100+ 35 X 150+ 30X 47 +50 X o5+ 20 X 1, <700

10X grprt 20X cpe 15 X pyory 35 X s ¥ 15X pyey 15X 25 X g+ 15 X 7 <700

15X grprt20 X ¥10- X gy 10X 40+ 15X eyt 15X)y 15 X g +10- X 1, <700

x €(2,3,...,10] ;j€|BEEF,CHK , DISH, HAM , MCH , MTL, SPG , TUR)

]

The CMPL model diet.cmpl can be formulated as follows:

parameters:
NUTR ¢ = Set ("A", "Bl", "B2", "C") ,.
FOOD := set ("BEEF", "CHK", "FISH", "HAM", "MCH", "MTL", "SPG", "TUR");

#cost per package
costs[FOOD] := (3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49);

CMPL v.1.12 - Manual 49

#provision of the daily requirements for vitamins in percentages
vitamin[NUTR, FOOD] := ((60, 8, 8, 40, 15, 70, 25, 60) ,
(20, 0, 10, 40, 35, 30, 50, 20) ,
(10, 20, 15, 35, 15, 15, 25, 15),
(15, 20, 10, 10, 15, 15, 15, 10)
)

#weekly vitamin requirements
vitMin [NUTR]:= (700,700,700,700);

variables:
x [FOOD]: integer([2..10];

objectives:

cost: costs[]T * x[]->min;

constraints:
capacity restriction

2: vitamin[,] * x[] >= vitMinI[];

An alternative formulation is based on the cmplData file diet-data.cdat that is formulated as follows:

SNUTR set < A Bl B2 C >
$FOOD set < BEEF CHK FISH HAM MCH MTL SPG TUR >

#cost per package
%costs[FOOD] < 3.19 2.59 2.29 2.89 1.89 1.99 1.99 2.49 >

#provision of the daily requirements for vitamins in percentages
$vitamin [NUTR,FOOD] < 60 8 8 40 15 70 25 60

20 0 10 40 35 30 50 20

10 20 15 35 15 15 25 15

5 20 10 10 15 15 15 10 >

#weekly vitamin requirements
%vitMin [NUTR] < 700 700 700 700 >

Assuming that the corresponding CMPL file diet-data.cmpl is in the same working directory the model
can be formulated as follows:

$data diet-data.cdat: FOOD set, NUTR set, costs[FOOD], vitamin[NUTR,FOOD], vit-
Min [NUTR]

variables:
x[FOOD]: integer[2..10];

CMPL v.1.12 - Manual 50

objectives:

cost: costs[]T * x[]->min;

constraints:
capacity restriction
2: vitamin[,] * x[] >= vitMin[];

Solving this CMPL model through using the command:

cmpl diet-data.cmpl

leads to the same solution as for the first formulation:

Problem diet.cmpl
Nr. of variables 8
Nr. of constraints 4

Objective name cost

Solver name CBC

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x [BEEF] I 2 2 10 -
x [CHK] I 8 2 10 -
x [FISH] I 2 2 10 -
x [HAM] I 2 2 10 -
x [MCH] I 10 2 10 -
x [MTL] I 10 2 10 -
x[SPG] I 10 2 10 -
x [TUR] I 2 2 10 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
A G 1500 700 Infinity -
Bl G 1330 700 Infinity -
B2 G 860 700 Infinity -
¢ G 700 700 Infinity -

2.8.1.2 Production mix

This model calculates the production mix that maximizes profit subject to available resources. It will identify
the mix (number) of each product to produce and any remaining resource.

The example involves three products which are to be produced with two machines. The following data is
given:

CMPL v.1.12 - Manual 51

P1 P2 P3| upper bounds [h]
upper bound of a product [units] 250 240 250
selling price per unit [€/unit] 500 600 450
direct costs per unit [€/unit] 425 520 400
profit contribution per unit [€/unit] 75 80 50
machine hours required per unit
machine 1 [h/unit] 8 15 12 1,000
machine 2 [h/unit] 15 10 8 1,000
The mathematical model can be formulated as follows:
75-x,+80-x,+50-x;—>max !
S.1.
8- x,+15x,+12-x,<1,000
15-x,+10-x,+8-x,<1,000
xIE{O,l 250}
x2€{0,1 240}
x3€{0,1 ,...,250}
The CMPL model production-mix.cmpl is formulated as follows:
%arg -solver glpk
parameters:
products := 1..3;
machines := 1..2;
price[products] := (500, 600, 450);
costs|[products] := (425, 520, 400);
#machine hours required per unit
a[machines, products] := ((8, 15, 12), (15, 10, 8));
#fupper bounds of the machines
b[machines] := (1000, 1000);
#profit contribution per unit
{7 in products: c[j] := price[j]l-costs[jl; }

#upper bound of the products

xMax [products] := (250, 240, 250);
variables:
X [products]: integer;

CMPL v.1.12 - Manual

52

objectives:

profit: c[]T * x[] ->max;
constraints:
res: al,] * x[] <= Dbl[];

O<=x[]<=xMax[];

The model can be formulated alternatively by using the cmplData prodmix-data.cdat file.

$products set < 1..3 >

$machines set < 1..2 >

%price[products] <500 600 450 >
%costs[products] <425 520 400 >

#machine hours required per unit
%a[machines, products] < 8 15 12 15 10 8 >

#upper bounds of the machines
$b[machines] < 1000 1000 >

#lower and upper bound of the products
%$xMax [products] < 250 240 250>
$xMin[products] < 45 45 45 >

#fixed setup costs
SFC[products] < 500 400 500>

The parameter arrays xMin and FC are not necessary for the given problem and therefore not specified
within the sdata options in the following CMPL file prodmix-data.cdat:

%arg -solver glpk
%$data : products set, machines set, pricel[products], costs[products]

%data : a[machines,products], b[machines], xMax|[products]

parameters:
#profit contribution per unit

{J in products: <c[j] := price[]j]l-costs[j]; }
variables:
x [products]: integer;

objectives:
profit: c[]T * x[] ->max;

constraints:
res: al,] * x[] <=DbI[];

O<=x[]<=xMax[];

CMPL v.1.12 - Manual 53

The CMPL command

cmpl production-mix-data.cmpl

leads to the following Solution:

Activity

Lower bound

Upper bound

Marginal

Problem production-mix.
Nr. of variables 3
Nr. of constraints 2
Objective name profit
Solver name GLPK
Objective status optimal
Objective value 6395 (max!)
Variables
Name Type

[1] I

[2] I

[3] I
Constraints
Name Type
res 1
res 2 L

-Infinity
-Infinity

2.8.1.3 Production mix including thresholds and step-wise fixed costs

This model calculates the production mix that maximizes profit subject to available resources. When a
product is produced, there are fixed set-up costs. There is also a threshold for each product. The quantity of

a product is zero or greater than the threshold.

The example involves three products which are to be produced with two machines. The following data is

given:
upper
Pl P2 & bou:Zs [h]

production minimum of a product [units] 45 45 45
upper bound of a product [units] 250 240 250
selling price per unit [€/unit] 500 600 450
direct costs per unit [€/unit] 425 520 400
profit contribution per unit [€/unit] 75 80 50
set-up costs [€] 500 400 500
machine hours required per unit

machine 1 [h/unit] 8 15 12 1,000

machine 2 [h/unit] 15 10 8 1,000

The mathematical model can be formulated as follows:

CMPL v.1.12 - Manual

54

75-x,+80-x,+50-x;—500-y,—400- y,—500-y; — max !
S.L.

&-x,+15x,+12-x,<1,000

15-x,+10-x,+8-x,<1,000

45-y,<x,<250-y,
45-y,<x,<240-y,
45-y,<x,<250-y,

x,€[0,1,...,250)
x,€[0,1,...,240)
x,€[0,1,...,250)
y,€0,1} ;j=1(1)3

The CMPL model production-mix-fixed-costs.cmpl is formulated as follows:

%$data production-mix-data.cdat

parameters:
#profit contribution per unit

{7 in products: c[j] := price[j]l-costs[jl; }

variables:
{7 in products : x[j]: integer[0..xMax[j]]; }
y[products] : binary;

objectives:
profit: c[]T * x[] - FC[IT * y[] ->max;

constraints:
res: al,] * x[] <= Dbl];

bounds {j in products: xMin[]j] * y[]J] <= x[j] <= xMax[j] * y[jl; }

CMPL command:

cmpl production-mix-fixed-costs.cmpl

Solution:
Problem production-mix-fixed-costs.cmpl
Nr. of variables 6

Nr. of constraints 8

Objective name profit
Solver name CBC
Objective status optimal
Objective value 4880 (max!)

CMPL v.1.12 - Manual 55

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1] I 0 0 250 -
x[2] I 66 0 240 -
x[3] I 0 0 250 -
y[1] B 0 0 1 -
y[2] B 1 0 1 -
yI3] B 0 0 1 -
Constraints

Name Type Activity Lower bound Upper bound Marginal
res 1 L 990 -Infinity 1000 -
res 2 L 660 -Infinity 1000 -
bounds_1_1 L 0 -Infinity 0 -
bounds_1_2 L 0 -Infinity 0 -
bounds 2 1 L -21 -Infinity 0 -
bounds 2 2 L -174 -Infinity 0 -
bounds_3_1 L 0 -Infinity 0 -
bounds_3_2 L 0 -Infinity 0 -

2.8.1.4 The knapsack problem

Given a set of items with specified weights and values, the problem is to find a combination of items that fills
a knapsack (container, room, ...) to maximize the value of the knapsack subject to its restricted capacity or
to minimize the weight of items in the knapsack subject to a predefined minimum value.

In this example there are 10 boxes, which can be sold on the market at a defined price.

box number price weight
[€/box] [pounds]

1 100 10
2 80
3 50
4 150 11
5 55 12
6 20 4
7 40
8 50
9 200 10

10 100 11

1. What is the optimal combination of boxes if you are seeking to maximize the total sales and are able to
carry a maximum of 60 pounds?

2. What is the optimal combination of boxes if you are seeking to minimize the weight of the transported
boxes bearing in mind that the minimum total sales must be at least €600 ?

CMPL v.1.12 - Manual 56

Model 1: maximize the total sales

The mathematical model can be formulated as follows:

100-x,+80-x,+50-x;+150-x 4+ 55-x5+20- x4+ 40-x;+50-x4+200-x+100- x,,— max !

S.1.

10-x,+5x,+8x;+11-x,+12-x,+4-x,+6-x,+9-x; +10-x+11-x,,<60

x,€(0,1] ;j=1(1)10

The basic data is saved in the CMPL file knapsack-data.cdat:

S$boxes set < 1(1)10 >

#weight of the boxes

#price per box

#max capacity
SmaxWeight <60>

#min sales
$minSales <600>

$w[boxes] < 10 5 8 11 12 4 ¢ 9 10 11 >

%p[boxes] <100 80 50 150 55 20 40 50 200 100 >

A simple CMPL model knapsack-max-basic.cmpl can be formulated as follows:

%data knapsack-data.cdat

%display nonZeros

variables:
x [boxes] binary;
objectives:
sales: p[]lT * x[] ->max;

constraints:

boxes set,

weight: w[]T * x[] <= maxWeight;

w[boxes],

plboxes], maxWeight,

minSales

CMPL command:

cmpl knapsack-max-basic.cmpl

Solution:
Problem knapsack-max-basic.cmpl
Nr. of variables 10

Nr. of constraints 1

Objective name sales

Solver name CBC

Objective status optimal

Objective value 700 (max!)

CMPL v.1.12 - Manual

57

Nonzero variables

Name Type Activity Lower bound
x[1] B 1 0
x[2] B 1 0
x[4] B 1 0
x[6] B 1 0
x[8] B 1 0
x[9] B 1 0
x[10] B 1 0
Nonzero constraints

Name Type Activity Lower bound

Upper bound Marginal
1 —
1 —_
1 —
1 —
1 -
1 -
l -
Upper bound Marginal
60 -

Model 2: minimize the weight

The mathematical model can be formulated as follows:

10-x,+5-x,+8 x;3+11-x,+12-x5+4- x,+6-x,+9- x4, +10- x4+ 11-x,,—> min !

S.1.

100-x,+80-x,+50-x;+150-x,+55-x5+20-x,+40-x,+50-x;+200-x,+100-x,,=600

x,€0,1] ;j=1(1)10

A simple CMPL model knapsack-min-basic.cmpl can be formulated as follows:

%data knapsack-data.cdat

%display nonZeros

variables:
x [boxes] binary;
objectives:
weight: w[]T * x[] ->min;
constraints:

sales: p[]T * x[] >= minSales;

CMPL command:

cmpl knapsack-min-basic.cmpl

Solution:

Problem knapsack-min-basic.cmpl

Nr. of variables 10

Nr. of constraints 1

Objective name weight

Solver name CBC

Objective status optimal

Objective value 47 (min!)

Nonzero variables

Name Type Activity Lower bound

Upper bound Marginal

CMPL v.1.12 - Manual 58

x[1] B 1 0 1 -
x[2] B 1 0 1 -
x[4] B 1 0 1 -
x[9] B 1 0 1 -
x[10] B 1 0 1 -
Nonzero constraints

Name Type Activity Lower bound Upper bound Marginal
sales G 630 600 Infinity -

2.8.1.5 Transportation problem using 1-tuple sets

A transportation problem is a special kind of linear programming problem which seeks to minimize the total
shipping costs of transporting goods from several supply locations (origins or sources) to several demand
locations (destinations).

The following example is taken from (Anderson et.al. 2011, p. 261ff). This problem involves the transporta-
tion of a product from three plants to four distribution centres. Foster Generators operates plants in Cleve-
land, Ohio; Bedford, Indiana; and York, Pennsylvania. The supplies are defined by the production capacities
over the next three-month planning period for one particular type of generator.

The company distributes its generators through four regional distribution centres located in Boston, Chicago,
St. Louis, and Lexington. It is to decide how much of its products should be shipped from each plant to each
distribution centre. The objective is to minimize the transportation costs.

Plants Centers

6000

5000

4000

6000

2000

1500

Lexington

The problem can be formulated in the form of the general linear programme below

CMPL v.1.12 - Manual 59

N

-2 i
! ’ ~.
1l
I o
%) Q:.
=
< N
I 5
= =)
N —
3

~.
Il
—_
<

sj=1(1)n
;i=1(1)m, j=1(1)n

M:
Ry

1l
jk

Kol
v
o

x,; — number of units shipped from plant i to center j
¢; — cost per unit of shipping from plant i to center j
s; — supply in units at plant i

d; — demand in units at desitination j

The CMPL model transportation.cmpl can be formulated as follows:

%display nonZeros

parameters:
plants = 1(1)3;
centres := 1(1)4;
s[plants] := (5000,6000,2500);
d[centres] := (6000,4000,2000,1500);
c[plants,centres] := ((3,2,7,6), (7,5,2,3),(2,5,4,5));

variables:
x [plants,centres]: reall0O..];

objectives:

costs: sum{i in plants, j in centres : c[i,j] * x[i,j] } ->min;
constraints:

supplies {i in plants : sum{j in centres: x[i,3j]} = s[i];}

demands {j in centres : sum{i in plants : x[1i,3]} = dIl[jl;}

or by using an additional cmplData file transportation-data.cdat

%plants set < 1..3 >
%$centres set < 1..4 >

s[plants] < 5000 6000 2500 >
$d[centres] < 6000 4000 2000 1500 >

%

%c[plants, centres] < 3 2 7 6
752 3

2545 >

and the corresponding CMPL model:

CMPL v.1.12 - Manual 60

%data transportation-data.cdat

%display nonZeros

variables:

x [plants, centres]: reall0..];

objectives:

costs: sum{i in plants, j in centres : c[i,j] * x[i,3] } ->min;

constraints:

supplies {i in plants : sum{j in centres: x[1i,3]} = s[i];}

demands {j in centres : sum{i in plants : x[1i,3]} = dI[jl;}
CMPL command:
cmpl transportation.cmpl
Solution:
Problem transportation.cmpl
Nr. of variables 12
Nr. of constraints 7
Objective name costs
Solver name CBC
Objective status optimal
Objective value 39500 (min!)
Nonzero variables
Name Type Activity Lower bound Upper bound Marginal
x[1,1] C 3500 0 Infinity 0
x[1,2] C 1500 0 Infinity 0
x[2,2] C 2500 0 Infinity 0
x[2,3] C 2000 0 Infinity 0
x[2,4] C 1500 0 Infinity 0
x[3,1] C 2500 0 Infinity 0
Nonzero constraints
Name Type Activity Lower bound Upper bound Marginal
supplies 1 E 5000 5000 5000 1
supplies 2 E 6000 6000 6000 4
supplies_3 E 2500 2500 2500 -
demands_1 E 6000 6000 6000 2
demands_2 E 4000 4000 4000 1
demands_3 E 2000 2000 2000 -2
demands_4 E 1500 1500 1500 -1

CMPL v.1.12 - Manual 61

2.8.1.6 Transportation problem using multidimensional sets (2-tuple sets)

In the case that not all of the connections are possible for technological or commercial reasons (e.g. as in
the picture below) then an alternative model to the model above has to be formulated. Additionally is as-
sumed that the total demand is greater than the supplies.

Plants Centers

6000

1
Cleveland

5000

4000

6000

2000

2500

2500

Lexington

The mathematical model is based on the 2-tuple set routes that contains only the valid connections between
the plants and the centres.

z C;i X, - min!
(i, j)€routes
S.t.
Xy=S, ;i=1(1)m
(k, j) €routes
k=i
Z x;<d, ,]21(1)11
(i,1)€routes A
I=j
x; =0 ;(z',j)€r0utes

Die sets and parameters are specified in transportation-tuple-data.cdat

$routes set[2] < 11
12
14

CMPL v.1.12 - Manual 62

2 2 2 324
3133 >
%plants set < 1(1)3 >
scentres set < 1..4 >
%$s[plants] < 5000 6000 2500 >
%d[centres] < 6000 4000 2000 2500 >
clroutes] <3 2 o6 5 2 3 2 4 >

%

that is connected to the CMPL model transportation-tuple-data.cmpl:

%data : plants set, centres set[l], routes set[2]
%$data : cl[routes] , s[plants] , dl[centres]

%display nonZeros

variables:
x[routes]: real[0..];
objectives:
costs: sum{ [i1,J] in routes : c[i,jl*x[1i,]] } ->min;
constraints:
supplies {i in plants : sum{j in routes *> [i,*] : x[i,j]} = s[i];}

demands {j in centres: sum{i in routes *> [*,j] : x[1i,]]} <= d[j];}

Solution:

Problem transportation-tuple-data.cmpl
Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name CBC

Objective status optimal

Objective value 36500 (min!)

Nonzero variables

Name Type Activity Lower bound Upper bound Marginal
x[1,1] C 2500 0 Infinity 0
x[1,2] ¢ 2500 0 Infinity 0
x[2,2] C 1500 0 Infinity 0
x[2,3] C 2000 0 Infinity 0
x[2,4] C 2500 0 Infinity 0
x[3,1] C 2500 0 Infinity 0
Nonzero constraints

Name Type Activity Lower bound Upper bound Marginal
supplies 1 E 5000 5000 5000 3
supplies 2 E 6000 6000 6000 6
supplies 3 E 2500 2500 2500 2
demands_1 L 5000 -Infinity 6000 -
demands_2 L 4000 -Infinity 4000 -1
demands_3 L 2000 -Infinity 2000 -4
demands_4 L 2500 -Infinity 2500 -3

CMPL v.1.12 - Manual 63

2.8.1.7 Quadratic assignment problem

Assignment problems are special types of linear programming problems which assign assignees to tasks or
locations. The goal of this quadratic assignment problem is to find the cheapest assignments of n machines
to nlocations. The transport costs are influenced by

- thedistance d ; between location jand location k and
- the quantity f,, between machine h and machine i, which is to be transported.
The assignment of a machine A to a location j can be formulated with the Boolean variables

Y o= 1 , if machine 4 is assigned to location j
"0, ifnot

The general model can be formulated as follows:
n n n n
z z Z Z thi'djk'xhj'xik > min!

h=1i=1 j=1 k=1
i#h k%)

S.t

Yox,=1 ;h=1(1)n
j=1

n
thj:l
h=1

si=1{1)n
x;€(0,1) ;h=1(1)n, j=1(1)n

Because of the product x,-x, in the objective function the model is not a linear model. But it is possible
to use a set of inequations to make an equivalent transformation of such multiplications of variables. This
transformation is implemented in CMPL and the set of inequations will be generated automatically.

Consider the following case: There are 5 machines and 5 locations in the given factory. The quantities of
goods which are to be transported between the machines are indicated in the figure below.

As shown in the picture below the machines are not fully connected. Therefor it makes sense to formulate
the objective function with a sum over a 2-tuple set with the name routes for the valid combinations
between the machines.

n n

i z Z thi'djk'xhj'xik > min!

(h,i)€routes j=1 k=1
k#j

The distances between the locations are given in the following table:

CMPL v.1.12 - Manual 64

from/to 1 2 3 4 5
1 M 1 2 3 4
2 2 M 1 2 3
3 3 1 M 1 2
4 2 3 1 M 1
5 5 3 2 1 M

The CMPL model quadratic-assignment.cmpl can be formulated as follows:

%display nonZeros
%display var x[*

$display ignoreCons

parameters:
n:=5;
df,]:=

(

(2, 0, 1, 2, 3),
(3,1, 0, 1, 2y,
(2, 3, 1, 0, 1),
(5 3,1, 1, 0));

routes := set ([1,2] , [1,3], (1,51, (2,31 , [3,41 , [3,51 , [4,5]);
t [routes] := (10,3,20,15,5,20,35);

variables:
x[1l..n,1..n]: binary;
#dummy variables to store the products x hj * x ik

{ [h,1i] in routes, j:=1(1)n, k:=1(1)n , k<>j: wlh,j,i,k]: reallO..1]; }

objectives:
costs: sum{ [h,i] in routes, Jj:=1(1)n, k:=1(1l)n
tlh,i]1*d[j, k] *w[h,j,1i,k] } ->min;

, k<>7:

constraints:
{ [h,1i] in routes, j:=1(1)n, k:=1(1l)n, k<>j: wlh,j,i,kl=x[h,jl*x[1i,k];}
sosl { h:=1(1)n: sum{ j:=1(1)n: x[h,j] } 1; }
sos2 { j:=1(1l)n: sum{ h:=1(1)n: x[h,3] } = 1; }

CMPL command:

cmpl quadratic-assignment.cmpl

Solution:

Problem quadratic-assignment.cmpl
Nr. of variables 305

Nr. of constraints 570

Objective name costs

Solver name CBC

Display variables nonzero variables (x[*

Display constraints ignore all constraints

CMPL v.1.12 - Manual 65

Objective status optimal

Objective value 134 (min!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1,4] B 1 0 1 -
x[2,1] B 1 0 1 -
x[3,2] B 1 0 1 -
x[4,5] B 1 0 1 -
x[5,3] B 1 0 1 -

The optimal assignments of machines to locations are given in the the table below:

locations
1 2 3 4 5
1 X
a8 2 X
£
5 3 X
©
E 4 X
5 X

2.8.1.8 Quadratic assignment problem using the solutionPool option

It is for several reasons interesting to catch the feasible integer solutions found during a MIP optimisation.
Gurobi and Cplex are able to generate and store multiple solutions to a mixed integer programming (MIP)
problem. With the display option solutionPool these feasible integer solutions can be shown in the solu-
tion report. It is recommended to control the behaviour of the solution pool by setting the particular Gurobi
or Cplex solver options.

If the CMPL model for quadratic assignment problem above is extended by the following CMPL header
entries, then all feasible integer solutions found by Cplex.

$arg —-solver cplex

%display solutionPool

Solution:

Problem

Nr. of variables
Nr. of constraints
Objective name

Nr. of solutions
Solver name

Display variables
Display constraints

Solution nr.
Objective status

Objective value

quadratic-assignment.cmpl
305

570

costs

5

CPLEX

nonzero variables (x[*)

ignore all constraints

integer optimal solution
134 (min!)

CMPL v.1.12 - Manual 66

Variables

Name

Type Activity

Lower bound

Upper bound

Marginal

Solution nr.
Objective status

Objective value

Variables

Name

integer feasible solution
134 (min!)

Type Activity

Lower bound

Upper bound

Marginal

Solution nr.
Objective status

Objective value

Variables

Name

integer feasible solution
188 (min!)

Type Activity

Lower bound

Upper bound

Marginal

Solution nr.
Objective status

Objective value

Variables

Name

integer feasible solution
177 (min!)

Type Activity

Lower bound

Upper bound

Marginal

Solution nr.
Objective status

Objective value

Variables
Name

integer feasible solution
191 (min!)

Type Activity

Lower bound

Upper bound

Marginal

CMPL v.1.12 - Manual

67

2.8.1.9 Generic travelling salesman problem

The travelling salesman problem is well known and often described. In the following CMPL model the (x,y)
coordinates of the cities are defined by random numbers and the distances are calculated by the euclidian
distance of the (x.y) coordinates. The CMPL model tsp.cmpl can be formulated as follows:

%arg -solver cbc
%arg -ignoreZeros

%display var x*

parameters:
seed:=srand (100) ;
M:=10000;

nrOfCities:=10;

cities:=1..nrOfCities;
{i in cities:

xp[i] :=rand(100) ;
ypli] :=rand(100);

{i in cities, j in cities:

{i==7:
dist[i,]]:=M; |

default:
dist[i,j]:= sqrt((xplil-xp[j])"2 + (yplil-yp[J])"2);
dist[]j,i]l:= dist[i,]Jj]l+rand(10)-rand(10);

}

}
variables:

x[cities,cities]: binary;

ul[cities]: real[O0..];

objectives:

distance: sum{i in cities, Jj in cities: dist[i,j]* x[i,]J]} ->min;

constraints:
sos_ i {j in cities: sum{i in cities: x[i,j]}=1; }
sos_j {i in cities: sum{j in cities: x[i,]j]}=1; }

noSubs {i:=2..nrOfCities, j:=2..nrOfCities, i<>j: uli] - ulj] +

nrOfCities * x[1,]] <= nrOfCities-1; }

CMPL command:

cmpl tsp.cmpl

CMPL v.1.12 - Manual 68

Solution:

Problem tsp.cmpl

Nr. of variables 109

Nr. of constraints 92

Objective name distance
Solver name CBC

Objective status optimal
Objective value 321.319 (min!)

Nonzero variables (x*)
Name Type Activity Lower bound Upper bound Marginal

Sow
ooy

< o Ul
-4 N O ™
W o e s O e e

The tour is optimal as follows:
1-4—-10—-3—-6—-9—-5—-8—-7—-2—1

2.8.2 Other selected examples

CMPL can be used as a pre-solver or simple solver. In this way it is possible to find a preliminary solution of
a problem as a basis for the model which is to be generated.

2.8.2.1 Solving the knapsack problem

The knapsack problem is a very simple problem that does not necessarily have to be solved by an MIP
solver. CMPL can be used as a simple solver for knapsack problems to approximate the optimal solution.

The idea of the following models is to evaluate each item using the relation between the value per item and
weight per item. The knapsack will be filled with the items sorted in descending order until the capacity limit
or the minimum value is reached. Using the data from the examples in section 2.8.1.4 a CMPL model to
maximize the total sales relative to capacity can be formulated as follows.

Model 1: maximize the total sales knapsack-max-presolved.cmpl

include "knapsack-data.cmpl"

#calculating the relative value of each box
{J in boxes: val[jl:= p[Jjl/wljl; }
sumSales:=0;

sumWeight:=0;

#initial solution
x[]:=(0,0,0,0,0,0,0,0,0,0);

CMPL v.1.12 - Manual 69

{ 1 in boxes:
maxVal:=max (vall[]);
{j in boxes:

{ maxval=vall[j]

{ sumWeight+w[j] <= maxWeight:
x[J1:=1;
sumSales:=sumSales + pl[j];
sumWeight :=sumWeight + w[j];

}

val[j]:=0;

break 7j;

}

echo "Solution found";

echo "Optimal total sales: "+ sumSales;

echo "Total weight : " + sumWeight;

{j in boxes: echo "x "+ j + ": " + x[J]; }
CMPL command:

cmpl knapsack-max-presolved.cmpl -noOutput -cd

Solution:

Solution found

Optimal total sales: 690
Total weight : 57

x 1:
X 2:
x 3:
X 4:
x 5:
X 6:
X 7

x 8:

O R B Ok O B

x 9:
x 10: 1

This solution is not identical to the optimal solution in section 2.8.1.4 but good enough as an approximate
solution.

Model 2: minimize the total weight knapsack-min-presolved.cmpl

include "knapsack-data.cmpl"
#calculating the relative value of each box

{j in boxes: val[jl:= w[jl/pl[jl; }

CMPL v.1.12 - Manual 70

M:=10000;
sumSales:=0;
sumWeight:=0;
#initial solution
x[(]:=(0,0,0,0,0,0,0,0,0,0);
{sumSales < minSales:
maxVal:=min(vall]);
{7 in boxes:
{ maxvVal=vall[j]
{ sumSales < minSales:
x[j1:=1;
sumSales:=sumSales + pl[]j];
sumWeight :=sumWeight + w[j];
}
val([j]:=M;
break 7j;

}
repeat;
}

echo "Solution found";

echo "Optimal total weight : " + sumWeight;

echo "Total sales: "+ sumSales;

{j in boxes: echo "x "+ j + ": " + x[J]; }
CMPL command:

cmpl knapsack-min-presolved.cmpl -noOutput -cd

Solution:

Optimal total weight : 47
Total sales: 630

x 1:
X 2:
X 3:
X 4:
x 5:
X 6:
x T:

x 8:

P O O O O Fr O

x 9:
x 10: 1

This solution is identical to the optimal solution in section 2.8.1.4.

CMPL v.1.12 - Manual 71

2.8.2.2 Finding the maximum of a concave function using the bisection
method

One of the alternative methods for finding the maximum of a negative convex function is the bisection
method. (Hillier and Liebermann 2010, p. 554f.) A CMPL programme to find the maximum of

f(x)=12-x—3-x*~2-x" can be formulated as follows (bisection.cmpl):

parameters:
#distance epsilon
e:=0.02;
#initial solution
x1l:= 0;
Xo:= 2;
xn:= (x1+xo0)/2;
{ (xo-x1) > e

fd:= 12 - 12 * xn™3 - 12 * xn"5;
{ £fd >= 0 : xl:=xn; |
fd <= 0 : xo:=xn ;}

xn:= (x1+x0)/2;

fx := 12 * xn -3 * xn™4 - 2 * xn"6;

echo "f'(xn): " + format ("%$10.4f",fd) + " x1l: " +
format ("%6.4f",x1) + " xo: " + format("%6.4f",x0) + " xn: " +
format ("%6.4f",xn) + " f(xn): " + format ("%6.4f",fx);

repeat;

}

echo "Optimal solution found";
X:1=xXn;

echo "x: "+ format("%$2.3f",x);

echo "function value: " + (12 * x -3 * x™ - 2 * x70);

CMPL command:

cmpl bisection.cmpl -noOutput -cd

Solution:

f' (xn) -12.0000 x1: 0.0000 xo: 1.0000 xn: 0.5000 f(xn): 5.7812
f'(xn) 10.1250 x1: 0.5000 xo: 1.0000 xn: 0.7500 f(xn) 7.6948
f' (xn) 4.0898 x1: 0.7500 xo: 1.0000 xn: 0.8750 f(xn): 7.8439
f'(xn) : -2.1940 x1: 0.7500 xo: 0.8750 xn: 0.8125 f(xn): 7.8672
f' (xn) 1.3144 x1: 0.8125 xo: 0.8750 xn: 0.8438 f(xn): 7.8829
f' (xn) -0.3397 x1: 0.8125 xo0: 0.8438 xn: 0.8281 f (xn) 7.8815
f'(xn) 0.5113 x1: 0.8281 xo: 0.8438 xn: 0.8359 f (xn) 7.8839

CMPL v.1.12 - Manual 72

Optimal solution found
x: 0.836
function value: 7.883868

3 CMPL software package

3.1 CMPL software package in a glance

CMPL (<Coliop|Coin> Mathematical Programming Language) is a mathematical programming language and
a system for mathematical programming and optimisation of linear optimisation problems.

CMPL executes CBC, GLPK, Gurobi, SCIP or CPLEX directly to solve the generated model instance. Because it
is also possible to transform the mathematical problem into MPS, Free-MPS or OSiL files, alternative solvers
can be used.

The CMPL distribution contains Coliop which is an (simple) IDE (Integrated Development Environment) for
CMPL and also pyCMPL, jCMPL and CMPLServer.

PYCMPL is the CMPL application programming interface (API) for Python and an interactive shell and
jJCMPL is CMPL's Java API. The main idea of this APIs is to define sets and parameters within the user ap-
plication, to start and control the solving process and to read the solution(s) into the application if the prob-
lem is feasible. All variables, objective functions and constraints are defined in CMPL. These functionalities
can be used with a local CMPL installation or a CMPLServer.

CMPLServer is an XML-RPC-based web service for distributed and grid optimisation that can be used with
CMPL, pyCMPL and jCMPL. It is reasonable to solve large models remotely on the CMPLServer that is in-
stalled on a high performance system. CMPL provides four XML-based file formats for the communication
between a CMPLServer and its clients. (CmplInstance, CmplSolutions, CmplMessages, CmplInfo).

3.2 Installation

« An installation is not necessary. You only have to download the ZIP file for your operating system
from http://www.coliop.org and to unzip it. The CMPL package works out of the box in any folder.

- Installation Prerequisites / Python 2.7: Under Linux and OS X you have only to ensure that Python
2.7 is installed. (Usually by default). Under Windows pyCMPL should work out of the box because
the CMPL binary package contains pypy as Python environment.

3.3 CMPL

3.3.1 Running CMPL

To run CMPL it is necessary to start the cmpl script in the CMPL folder. This script sets the CMPL environ-
ment (PATH, environment variables and library dependencies) and starts the CMPL binary. A CMPL model
can be solved with the command cmpl <problemname>.cmpl. IS it also possible to execute cmplShell

CMPL v.1.12 - Manual 73

file:///Users/mike/Documents/Projekte/CMPL-Manual/1.%20http://www.coliop.org

script in the CMPL folder that also sets the CMPL environment and starts a command line window in which
CMPL can be executed.

3.3.2 Usage of the CMPL command line tool

The CMPL command line tool can be used in two modes. Using the solver mode, an LP or MIP can be formu-
lated, solved and analysed. In this mode, OSSolverService, GLPK or Gurobi is invoked. In the model mode it
is possible to transform the mathematical problem into MPS, Free-MPS or OSiL files that can be used by cer-
tain alternative LP or MIP solvers.

cmpl <cmplFile> [<options>]

Usage: cmpl <cmplFile.cmpl> [options]

Model mode:

-i <cmplFile> : input file

-m [<File>] : exports model in MPS format in a file or stdout

-fm [<File>] : exports model in Free-MPS format in a file or stdout

-Xx [<File>] : exports model in OSiL XML format in a file or stdout

-syntax : checks the syntax of the CMPL model w/o generating of a MPS or OSiL file
-noQutput : no generating of an MPS or OSiL file

Solver mode:

-solver <solver> : name of the solver you want to use
possible options: glpk, glpsol, cbc, scip, gurobi, cplex (default cbc)

-cmplUrl <url> : Url of a CmplServer - Without other arguments, the problem are solved on the
CmplServer (synchronous mode)

-send : Sends a problem to a CmplServer which have to be specified with -cmplUrl
(asynchronous mode)

-knock : Obtains the status of a problem at the CmplServer (asynchronous mode)
-retrieve : Retrieves the results of the problem from the CmplServer (asynchronous mode)
-maxServerTries <x> : maximum number of tries of failed CmplServer calls

-maxQueuingTime <x>: maximum time in <x> seconds that a problem waits in a CmplServer queue
-solution [<File>] : optimisation results in CmplSolution XML format

-solutionCsv [<File>] : optimisation results in CSV format

CMPL v.1.12 - Manual 74

-solutionAscii [<File>] : optimisation results in ASCII format
-obj <objName> : name of the objective function

-objSense <max/min> : objective sense

-maxDecimals <x> : maximal number of decimals in the solution report (max 12)
-zeroPrecision <x> : precision of zero values in the solution report (default 1e-9)
-ignoreZeros : display only variables and constraints with non-zero values in the solution report

-dontRemoveTmpFiles : don't remove temporary files (mps,osil,osrl,gsol)

-alias <alias> : uses an alias name for the cmpl model

General options:
-data <cmplDataFile> : reads a cmplData file

-e [<File>] : output for error messages and warnings
-e simple output to stderr (default)
-e <File> output in CmplMessage XML format to file

-matrix [<File>] : writes the generated matrix in a file or on stdout

-| [<File>] : output for replacements for products of variables

-s [<File>] : short statistic info

-p [<File>] : output for protocol

-silent : suppresses CMPL and solver messages

-integerRelaxation : all integer variables are changed to continuous variables

-gn : matrix reductions

-gf : generated constraints for products of variables are included at the original position

of the product
-cd : warning at multiple parameter definition

-ci <x> : mode for integer expressions (0 - 3), (default 1)
If the result of an integer operation is outside the range of a long integer then the
type of result will change from integer to real. This flag defines the integer range
check behaviour.
-ci0 no range check
-ci 1 default, range check with a type change if necessary
-ci 2 range check with error message if necessary
-ci 3 each numerical operation returns a real result

-f% <format> : format option for MPS or OSiL files (C++ style - default %f)
-h : get this help
-V : version

CMPL v.1.12 - Manual 75

Examples - solver mode:

cmpl test.cmpl solves the problem test.cmpl locally with the de-
fault solver and displays a standard solution report

cmpl test.cmpl -solver glpk test.cmpl solves the problem test.cmpl locally using GLPK
and displays a standard solution report

cmpl test.cmpl J solves the problem test.cmpl remotely with the

—cmplUrl http://194.95.44.187:8080 defined CMPLServer and displays a standard solution
report

cmpl test.cmpl -solutionCsv solves the problem test.cmpl locally with the de-

fault solver writes the solution in the CSV-file
test.csv and displays a standard solution report

cmpl "/Users/test/Documents/ If the file name or the path contains blanks then one
Projects/Project 1/test.cmpl" can enclose the entire file name in double quotes.

Examples - model mode:

cmpl test.cmpl -m test.mps reads the file test.cmpl and generates the MPS-
file test.mps.

cmpl test.cmpl -fm test.mps reads the file test.cmpl and generates the Free-
MPS-file test .mps.

cmpl test.cmpl -x test.osil reads the file test.cmpl and generates the OSiL-
file test.osil.

3.3.3 Syntax checks
Syntax checks can be carried out with or without data.

If the parameters and sets are specified within the parameter section it is only necessary to use the com-
mand line argument -syntax or the CMPL header option $arg -syntax. The following CMPL model
test.cmpl:

%arg -syntax
parameters:
n :=1..2
m:=1..3;
(
(

Alm,n] := ((5.6, 7.7, 10.5),(9.8, 4.2, 11.1));
variables:

x[m]: reallO..];
objectives:

profit: c[]T * x[] -> max;
constraints:

machine: A[,] * x[] <= b[];

causes the error message

CMPL v.1.12 - Manual 76

CMPL model syntax check - running
error (compiler): file test.cmpl line 7: syntax error, unexpected SYMBOL UNDEF, expecting ';'
error (compiler): file test.cmpl line 13: syntax error, unexpected SYMBOL UNDEF

CMPL syntax check has finished with 2 error(s).

because the statement b[n] := (15, 20) inline 6 has to be closed by a semicolon.

If a user wants to execute a syntax check without data then a CMPL header entry $data has to be defined
including a complete specification of the sets and parameters that are necessary for the model. Please note
the CMPL header option $arg -syntax has to be specified before the $data entry.

The following CMPL model:

%arg -syntax

$data datafile.cdat : n set, m set, c[m], b[n], Alm,n]
variables:
x[m]: real[O..]

objectives:
profit: c[]T * x[] -> max;
constraints:

machine: A[,] * x[] <= b[];

causes the error message

CMPL model syntax check - running
error (compiler): file .cmpl line 5: syntax error, unexpected SECT OBJ, expecting ';'

CMPL syntax check has finished with 1 error(s).

because the statement x [m]: real[0..] inline 4 has to be closed by a semicolon.

3.3.4 Using CMPL with several solvers

There are two ways to interact with several solvers. It is recommended to use one of the solvers which are
directly supported and executed by CMPL. The CMPL installation routine installs CBC and GLPK, where CBC
is the default solver. If you have installed Gurobi, CPLEX or SCIP then you can also use these solvers dir-
ectly. Because CMPL transforms a CMPL model into an MPS, a Free-MPS or an OSiL file, the generated model
instance can be solved by using most of the free or commercial solvers.

3.3.4.1 CBC

Cbc (Coin-or branch and cut) is an open-source mixed integer programming solver written in C++. It can be
used as a callable library or stand-alone solver. The CMPL distribution contains the CBC binary. For more in-

formation please visit https://projects.coin-or.org/Cbc.

Since CBC is the default solver CBC doesn’t need not to be specified:

cmpl <problem>.cmpl #Solves the problem locally with CBC

It is possible to use most of the CBC solver options within the CMPL header. Please see Appendix 6.1 for a
list of useful CBC parameters.

CMPL v.1.12 - Manual 77

https://projects.coin-or.org/Cbc

Usage of CBC parameters within the CMPL header:

$opt cbc solverOption [solverOptionValue]

3.3.4.2 GLPK

The GLPK (GNU Linear Programming Kit) package is intended for solving large-scale linear programming
(LP), mixed integer programming (MIP), and other related problems. "The GLPK package includes the pro-
gram glpsol, which is a stand-alone LP/MIP solver. This program can be invoked from the command line ...
to read LP/MIP problem data in any format supported by GLPK, solve the problem, and write the problem
solution obtained to an output text file." (GLPK 2014, p. 166.). For more information please visit the GLPK

project website: http://www.gnu.org/software/glpk.
The CMPL package contains GLPK and it can be used by the following command:

cmpl <problem>.cmpl -solver glpk

or by the CMPL header flag:

%arg -solver glpk # GLPK >= 5.58
%arg -solver glpsol # GLPK < 5.58

Most of the GLPK solver options can be used by defining solver options within the CMPL header. Please see
Appendix 6.2 for a list of useful GLPK parameters.

Usage of GLPK parameters within the CMPL header:

$opt glpk solverOption [solverOptionValue]

3.3.4.3 Gurobi

"The Gurobi Optimizer is a state-of-the-art solver for linear programming (LP), quadratic programming (QP)
and mixed-integer programming (MIP including MILP and MIQP). It was designed from the ground up to ex-
ploit modern multi-core processors. For solving LP and QP models, the Gurobi Optimizer includes high-per-
formance implementations of the primal simplex method, the dual simplex method, and a parallel barrier
solver. For MILP and MIQP models, the Gurobi Optimizer incorporates the latest methods including cutting
planes and powerful solution heuristics." (www.gurobi.com)

If Gurobi is installed on the same computer as CMPL then Gurobi can be executed directly only by using the
command

CMPL v.1.12 - Manual 78

http://www.gnu.org/software/glpk

cmpl <problem>.cmpl -solver gurobi

or by the CMPL header flag:

%arg -solver gurobi

All Gurobi parameters (excluding NodefileDir, LogFile and ResultFile) described in the Gurobi manual can be
used in the CMPL header.

Usage of Gurobi parameters within the CMPL header:

$opt gurobi solverOption [solverOptionValue]

3.3.4.4 SCIP

SCIP is a project of the Konrad-Zuse-Zentrum fir Informationstechnik Berlin (ZIB). "SCIP is a framework for
Constraint Integer Programming oriented towards the needs of Mathematical Programming experts who
want to have total control of the solution process and access detailed information down to the guts of the
solver. SCIP can also be used as a pure MIP solver or as a framework for branch-cut-and-price. SCIP is im-
plemented as C callable library and provides C++ wrapper classes for user plugins. It can also be used as a
standalone program to solve mixed integer programs."

[http://scip.zib.de/whatis.shtml](Achterberg 2009)

SCIP can be used only for mixed integer programming (MIP) problems. If SCIP is chosen as solver and the
problem is an LP then CBC is executed as solver.

If SCIP is installed on the same computer as CMPL then SCIP can be connected to CMPL by changing the
entry ScipFileName in the file <cmplhome>/bin/cmpl.opt.

Examples:

ScipFileName = /Applications/Scip/scip The binary scip is located in the folder /Applica-
tions/Scip

ScipFileName = /Program Files/Scip/scip.exe|Example for a Windows system. Please keep in
mind to use a slash as a path separator.

If this entry is correct then you can execute SCIP directly by using the command

cmpl <problem>.cmpl -solver scip

or by the CMPL header flag:

CMPL v.1.12 - Manual 79

http://scip.zib.de/whatis.shtml

%$arg -solver scip

All SCIP parameters described in the SCIP Doxygen Documentation can be used in the CMPL header.
Please see: http://scip.zib.de/doc/html/PARAMETERS.shtml

Usage SCIP parameters within the CMPL header:

%opt scip solverOption solverOptionValue

Please keep in mind, that in contrast to the SCIP Doxygen Documentation you do not have to use = as as-
signment operator between the solverOption and the solverOptionValue.

Examples:

%$opt scip branching/scorefunc p |CMPL solver parameter description for the parameter
branching score function which is described in the
SCIP Doxygen Documentation as follows:

branching score function ('s'um, 'p'roduct)
[type: char, range: {sp}, default: p]
branching/scorefunc = p

%opt scip lp/checkfeas TRUE # should LP solutions be checked, resolving
LP when numerical troubles occur?

[type: bool, range: {TRUE,FALSE}, default:
TRUE]

lp/checkfeas = TRUE

$opt scip lp/fastmip 1 # which FASTMIP setting of LP solver should
be used? 0: off, 1: low
[type: int, range: [0,1], default: 1]

lp/fastmip =1

3.3.4.5 CPLEX

CPLEX is a part of the IBM ILOG CPLEX Optimization Studio and includes simplex, barrier, and mixed integer
optimizers. "IBM ILOG CPLEX Optimization Studio provides the fastest way to build efficient optimization
models and state-of-the-art applications for the full range of planning and scheduling problems. With its in-
tegrated development environment, descriptive modelling language and built-in tools, it supports the entire
model development process." (IBM ILOG CPLEX Optimization Studio manual)

If CPLEX is installed on the same computer as CMPL then CPLEX can be connected to CMPL by changing the
entry CplexFileName in the file <cmplhome>/bin/cmpl.opt

CMPL v.1.12 - Manual 80

http://scip.zib.de/doc/html/PARAMETERS.shtml

Example:

CplexFileName = /Applications/IBM/ILOG/ J |The cplex binary is located in the specified
CPLEX Studiol25/cplex/bin/ folder
x86-64 darwin/cplex/

Please note that for Windows installations you also have to use slashes as a path separators (instead of the
usual backslashes). If this entry is correct then you can execute CPLEX directly by using the command

cmpl <problem>.cmpl -solver cplex

or by the CMPL header flag:

%arg -solver cplex

All CPLEX parameters described in the CPLEX manual (Parameters of CPLEX — Parameters Reference
Manual) can be used in the CMPL header.

Usage CPLEX parameters within the CMPL header:

%opt cplex solverOption solverOptionValue

You have to use the parameters for the Interactive Optimizer. The names of sub-parameters of hierarchical
parameters are to be separated by slashes.

Examples:

sopt cplex threads 2 Sets the default number of parallel threads that will be in-
voked.

%opt cplex mip/limits/aggforcut 4 |Limits the number of constraints that can be aggregated
for generating flow cover and mixed integer rounding
(MIR) cuts to 4.

%opt cplex J Sets the reduced-cost tolerance for optimality to 1e-8.
simplex/tolerances/optimality
le-8

3.3.4.6 Other solvers

Since CMPL transforms a CMPL model into an MPS, a Free-MPS or an OSiL file, the model can be solved us-
ing most free or commercial solvers. To create MPS, Free-MPS or OSiL files please use the following com-
mands:

CMPL v.1.12 - Manual 81

cmpl <problemname>.cmpl -m <problemname>.mps #MPS export
cmpl <problemname>.cmpl -fm <problemname>.mps #Free-MPS export

cmpl <problemname>.cmpl -x <problemname>.osil #0SiL export

3.4 Coliop

Coliop is an IDE (Integrated Development Environment) for CMPL intended to solve linear programming (LP)
problems and mixed integer programming (MIP) problems. Coliop is an open source project licensed under
GPL. It is written in C++ and is as an integral part of the CMPL distribution available for most of the relev-
ant operating systems (OS X, Linux and Windows).

Coliop can be executed by clicking the Coliop symbol in the CMPL folder. It is either a symbolic link to the
Coliop binary (OS X) or a script which starts Coliop (Windows and Linux).

The first working step is to create or to open a CMPL model.

L] Coliop4 - dietcmpl o =] &
| & 3 9 E; oE S b
1l o g< & 2 Q& P gﬂ
Problem | Qutpt | Soksson
parameters: "
HUTR := set("A" "y
FOOD := set("BE FISH", "HAM", "MCH", "MTL", "SPGE", "TUR"):
costs[FOOD] = (3.1%, + 2.29, : B9, r 1.99, .49)i
vitamin [NUTR, FOOD] : { (&0, ¥ s 40, N ¢ 25, BOY)

vitMin[NUTR] := (700,700,700,)i
variables:
x[FOOD] : integer|Z..10);

objectives:
cost: costs(]T * x([]->min;

constraints:

£28: wvitamin[,] * =[] >= witMin[].

If the CMPL model imports an CmplData file by using the Cmpl header entry %data or the import of another
CMPL file by using the CMPL function include then a list of the involved files are shown right of the CMPL
model. A user can switch between the files by clicking on the file hames in this list. If a file does not exists
then CMPL suggests to create the file.

CMPL v.1.12 - Manual 82

(K| Coliop4 - diet-data.cmpl [==]=)

IEEmXIBeDa] bO
Problem | Qutput | Solson

ldist-data. cmpl
RNUTR set < A E1 BZ C > diet-data.cdat

%FO0D set < BEEF CHK FISH HAM MCH MTL SPG TUR >

#cost per packag
Rkcozts[FOOD) < 3.19 2.5% 2.25 2.8% 1.89 1.59 1.9%9 2.45 >

fprovision of the daily
&vitamin[NUTR, FOOD] <

fweskly vitam
#vitMin[NUTR]

The model can be solved by clicking the button <Solve> in the toolbar or by choosing the menu entry <Ac-
tion—Solve>. If the model is feasible and a solution is found the solution appears in the tab <Solution>.

& Todicopd - deet-caincmgd C]

lgome IEODEY by

Prabigs | Oadpsf ey

Problem disc—dava.cspl
Hr. of wariablesa 2
Hr, of cometrsincae i

COHeCT LV il
Solver came
Dimplay warisbles
blaplay conscralnts

HOHaCTLVE FLALUS Primal
Objective valua 101,14 fminll)

Variables

Ha=a ™y ReEiviey Lower BEoand Tpesar bound
K [BEEF] < L
¥ [CHE] I] s 11}
= [FISH] I 2 I 13
¥ [HA] H 2 i 1
 [sacH | 1 id i L]
= [MTL| 1 10 3 10
B [#FG] H 1 i 1
u [Tum] 1 2 s 1

L DELEL A

Ve Aotiwviky Lower boord Tppssr bound Margizal
[+ 1504 b
[1330 TO0 I
-] nEg 100 Ing
[T0H) T4 mfininy

It is possible to obtain the output of the invoked solver and CMPL's output in the tab <Output>.

CMPL v.1.12 - Manual 83

- Coliopd - det-datacmgd s EIE

lgEma R4 PO

Frobpe Culjed Sgidon

CHFL mocda]l generstics - ronning -
CHFL warsism: 1,11.0 batal

Ruthors: Thomas Schleifd, Mike Steglich

piatributed under the GRL¥Y

cEsate model LNSTARCE ...
wWrite mcdsl inatancs ...

CHPFL. Bedel genaratioda - Findshed

Solver - ranning

Welcoms to the CRC MILF Salver
vazalea: I.9.8

Build Bwte: Apr 30 3006

command Lline - cbe C:/Maacs slke/AppData/Local / Teapfdian-data.mpd min delve aealu O/ raers ml ke AppData/Lasal s
Temp/dist-dats.guecl |Ssfault stratsgy 1)

A line 3 MAME 21 Musaz sl ml e Docusant 8/ cmp L -da e ssang les fempl Sdl et -dave . cmpl
At lins 3 FS#

AL lins ¥ COLIMNS

AL lipe 35 RHE

At line 18 RAMIES

AE lina 36 mHMDS g

If a syntax error occurs then a user can analyse it by clicking on the error message in the CMPL message list
below the CMPL model. The position in the CMPL model that occurs the error is shown automatically.

[X| Coliop4 - diet-data.cmpl ===

IeEmXiBeD a8 b

#data diet-data.cdat : FOOD set, NUTR set, costs{FCOD], vitamin(NUTR,FOOD], wvitMin(NUTR] |diet-data.cmpl

diet-data.cdat
variables:

®[FOOD]: int[2..10]:

ehjectives:
cost: costs[]T * x[]->min;

constraints:
capacity restriction

525: vitamin(,] * xﬁ.“:‘- vitMin(]:

Messages

.cmpl finished with errors

error in file <C:/Users/mike/Documents/cmpl-data/examples/cmpl/diet-data.cmpl> at line 4 : syntax error,
unexpected SYMBOL UNDEF, expecting TD RFAL or TD INT or TD BINARY

CMPL v.1.12 - Manual 84

3.5 CMPLServer

The CMPLServer is an XML-RPC-based web service for distributed and grid optimisation. XML-RPC provides
XML based procedures for Remote Procedure Calls (RPC), which are transmitted between a client and a
server via HTTP. (St. Laurent et al. 2001, p. 1.) XML-RPC has been chosen since this it is less resource con-
suming than other protocols like SOAP or REST due to its simpler functionalities.

A CMPLServer can be used in a single server mode or in a grid mode:

Single server mode Grid mode
=] | model > .
< results | J
.\g"‘- M “:
L& 7
\QQ\QQ\?\ " \é v
R
h!ﬂ“‘kr :J

= Q-J

Both modes can be understood as distributed systems “in which hardware and software components located
at networks computers communicate and coordinate their actions only by passing messages”. (Coulouris et
al, 2012, p. 17) Distributed optimisation is in this meaning interpretable as a distributed system that can be
used for solving optimisation problems. (cf. Kshemkalyani & Singhal, 2008, p. 1; Fourer et.al., 2010)

CMPL provides four XML-based file formats for the communication between a CMPLServer and its clients in
both modes (CmplInstance, CmplSolutions, CmplMessages, CmplInfo). A CmplInstance file
contains an optimisation problem formulated in CMPL, the corresponding sets and parameters in the Cm-
plData file format as well all CMPL and solver options that belong to the CMPL model. If the model is feas -
ible and a solution is found then a CmplSolutions file contains the solution(s) and the status of the in-
voked solver. If the model is not feasible then only the solver’s status and the solver messages are given in
the solution file. The CmplMessages file is intended to provide the CMPL status and (if existing) the CMPL
messages. A CmplInfo file is an XML file that contains (if requested) several statistics and the generated
matrix of the CMPL model.

In the single server mode only one CMPLServer that can be accessed synchronously or asynchronously by
the clients exists in the network. A model can be solved synchronously by executing the CMPL binary with
the command line argument -cmplUrl <url> or by running a pyCMPL or jCMPL programme by using the
methods Cmpl.connect (url) for connecting the server and Cmpl.solve () for solving the model re-
motely.* The client sends the model to the CMPLServer and then waits for the results. If the model is feas-
ible and an optimal solution is found the solution(s) can be received. If the model contains syntax or other
errors or if the model is not feasible the CMPL and solver messages can be obtained. Whereby in the syn-
chronous mode the client has to wait after sending the problem for the results and Messages in one process,
a model can also be solved asynchronously with pyCMPL and jCMPL by using the methods Cmpl.send (),

1 Please take a look at the pyCMPL and jCMPL descriptions in chapter 4.

CMPL v.1.12 - Manual 85

Cmpl.knock () and Cmpl.retrieve ()in several steps. After sending the model to the CMPLServer via
Cmpl.send () the server status can be obtained with Cmpl.knock (). If the CMPLServer is finished the
solution, the CMPL and the solver states and messages can be received by Cmpl.retrieve (). Itis reas-
onable to use the single server mode if a large model is formulated on a thin client in order to solve it re-
motely on the CMPLServer that is installed on a high performance system.

All these distributed optimisation procedures require a one-to-one connection between a CMPLServer and
the client. The grid mode extends this approach by coupling CMPLServers from several locations and at least
one coordinating CMPLGridScheduler to one “virtual CMPLServer” as a grid computing system that can be
defined “as a system that coordinates distributed resources using standard, open, general-purpose protocols
and interfaces to deliver non-trivial qualities of service.” (Forster & Kesselmann 2003, pos. 722) For the cli-
ent there does not appear any difference whether there is a connection to a single CMPLServer or to a CM-
PLGrid. The client's model is to be connected with the same functionalities as for a single CMPLServer to a
CMPLGridScheduler which is responsible for the load balancing within the CMPLGrid and the assignment of
the model to one of the connected CMPLServers. After this step the client is automatically connected to the
chosen CMPLServer and the model can be solved synchronously or asynchronously. A CMPLGrid should be
used for handling a huge amount of large scale optimisation problems. An example can be a simulation in
which each agent has to solve its own optimisation problem at several times. An additional example for such
a CMPLGrid application is an optimisation web portal that provides a huge amount of optimisation problems.

Both modes can be controlled by the cmp1Sserver script that can be started in the Cmp1shell.

cmplServer <command> [<port>] [-showLog]
command:
-start starts as single CMPLServer
-startInGrid starts CMPLServer and connects to CMPLGrid

-startScheduler starts as CMPLGridScheduler

-stop stops CMPLServer or CMPLGridScheduler

-status returns the status of the CMPLServer or CMPLGridScheduler
port defines CMPLServer's or CMPLGridScheduler's port
-showLog shows the CMPLServer or CMPLGridScheduler log file

3.5.1 Single server mode

The first step to establish the single server mode is to start the CMPLServer by typing the command:

cmplServer -start [<port>]

Optionally a port can be specified as second argument. The behaviour of a CMPLServer can be influenced by
editing the file cmplServer.opt thatis located on Mac OS X in /Applications/Cmpl/cmplServer,On
Linux in /usr/share/Cmpl/cmplServer and on Windows in c:\program files[(x86)]\Cmpl\
cmplServer. The example below shows the default values in this file.

cmplServerPort = 8008

maxProblems = 4

CMPL v.1.12 - Manual 86

maxInactivityTime = 43200
serviceIntervall = 30

solvers = cbc glpk

The default port of the CMPLServer can be specified with the parameter port. The parameter maxProb-
lems defines how many problems can be carried out simultaneously. If more problems than maxProblems
are connected with the CMPLServer the supernumerary problems are assigned to the problem waiting queue
and automatically started if a running problem is finished or cancelled. If a problem is longer inactive than
defined by the parameter maxInactivityTime it is cancelled and deleted automatically by the CM-
PLServer. This procedure as well as the problem waiting queue handling are performed by a service thread
that works perpetual after a couple of seconds defined by the parameter serviceIntervall. With the
parameter solvers it can be specified which solvers in the set of the installed solvers can be provided
by the CMPLServer.

start server

L

S—

cmplServer -start [<port>]

cmplServer.opt

cmplServerPort = 8008
maxProblems = 4
maxInactivityTime = 43200
servicelntervall = 30
solvers = cbc glpk

A running CMPLServer can be accessed by the CMPL binary or via CMPL's Python and Java APIs that contain
CMPLServer clients. One can execute a CMPL model remotely on a CMPLServer by using the command line
argument -cmplUrl.

cmpl <problem>.cmpl -cmplUrl http://<ip-adress-or-Domain>:<port>

This command executes the problem on the CMPLServer synchronously. That means CMPL waits right after
sending the problem for the results and messages in one process.

It is also possible to run a Cmpl Problem asynchronously on a CMPLServer. In a first step, the problem is
sent to the server by coupling the -cmp1Ur1 argument with the -send command line argument.

cmpl <problem>.cmpl -cmplUrl http://<ip-adress-or-Domain>:<port> -send

Afterwards, the status of the problem can be obtained by using the command line argument -knock.

cmpl <problem>.cmpl -knock

The results can be retrieved by using the command line argument -retrieve after finishing the problem
on the CMPLServer.

cmpl <problem>.cmpl -retrieve

CMPL v.1.12 - Manual 87

The status of a problem which is sent to a CMPLServer but not retrieved is saved automatically in a dump
file in the temp folder. Therefore the computer could be switched off after sending the problem and later
switched on to retrieve it.

In pyCMPL and jCMPL a CMPLServer can be connected by using the method Cmpl.connect (). Executing a
model can be done synchronously by executing the method Cmp1.solve () or asynchronously by using the
methods Cmpl.send (), Cmpl.knock() and Cmpl.retrieve (). These main functionalities are illus-
trated in the following picture.

connect client selected states
connect CMPLSERVER_OK
problemName, solver > CMPLSERVER_ERROR
p CMPLSERVER_BUSY
status, jobld |

CMPLSERVER_CLEANED

PROBLEM_RUNNING
PROBLEM_FINISHED
PROBLEM_CANCELED
PROBLEM_NOTRUNNING

send (if status==CMPLSERVER_OK)
CmplInstance including jobld >

status l

knock (until status==PROBLEM_FINISHED)
jobld

status I

retrieve (if status==PROBLEM_FINISHED)
l jobld

< CmplSolutions, CmplMessages, Cmplinfo

In the first step the client connects the CMPLServer, hands over its problem name and the solver with which
the problem is to be solved. Then the client receives the status of the CMPLServer and if the status is cM-

PLSERVER OK also the jobId is also sent. The status is CMPLSERVER ERROR if the demanded solver is
not supported or a CMPLServer occurs.

The synchronous method Cmpl.solve () is a bundle of the asynchronous methods Cmpl.send (), Cm-
pl.knock () and Cmpl.retrieve().

Cmpl.send () sends a CmplInstance XML string that contains all relevant information about a CMPL
model including the job1d, the CMPL and the solver options as well as the model itself and its data files to
the CMPLServer. If the number of running problems including the model sent is greater than maxProblems
the model is moved to the problem waiting queue and the CMPLServer returns the status
CMPLSERVER BUSY. If not the CMPLServer starts the solving process automatically if the CmplInstance
string is completely received and the model and data files are written to the hard disc. In this case the status
is set to PROBLEM RUNNING.

A CMPLServer uses the home path of the user who is running it and saves all relevant data in SHOME/Cm-
plServer (Mac and Linux) or $HOMEPATH%\CmplServer (Windows). The activities of the server can be

CMPL v.1.12 - Manual 88

obtained in the file Ccmplserver.log. Each problem is stored in an own folder specified by the jobId
which is deleted automatically after disconnecting the problem.

In the next step the client asks the CMPLServer whether solving the problem is finished or not via cm-
pl.knock () whereby the job1d identifies the problem and the CMPLServer returns the current status. The
client has to knock until the status is PROBLEM RUNNING (Or CMPLSERVER ERROR). If the status is cM-
PLSERVER BUSY the problem is put into the problem waiting queue until an empty solving slot is available
or the maximum queuing time (defined with the CMPL option -maxQueuingTime or by default 300
seconds) is reached. The procedure then stops automatically.

If the status is equal to PROBLEM RUNNING the solution, the CMPL and the solver messages and if reques-
ted some statistics can be received by using Cmpl.retrieve (). The client sends its job1d and then re-
trieves the CmplSolution, CmplMesages and CmplInfo XML strings. If Cmpl.knock() returns
CMPLSERVER ERROR the process is stopped.

The CMPLServer can be stopped by typing the command:

cmplServer -stop [<port>]

3.5.2 Grid mode

A CMPLGrid consists at least of one CMPLGridScheduler and usually a couple of CMPLServers that are con-
nected to at least one scheduler. A CMPLGridScheduler is the gateway to the CMPLGrid for the clients and
has to coordinate the traffic in the grid, that means it is responsible for the load balancing within the CM-
PLGrid and the assignment of the models to the connected CMPLServers. After receiving a model from a CM-
PLGridScheduler a CMPLServer has to communicate directly with the client to receive the model, to solve it
and to send (if the problem is feasible) the solution(s), the CMPL and solver messages and if requested
some information to the client. After these steps the client is disconnected automatically and the CMPLServ-
ers is waiting for the next problem from a CMPLGridScheduler.

The first step to start a CMPLGrid is to execute one or more CMPLGridScheduler by typing the command:

cmplServer -startScheduler [<port>]

As for the CMPLServers the parameter of a CMPLGridScheduler can be edited in the file cmplServer.opt.

start CMPLGridScheduler(s)

\”_—”_ =2 ‘ cmplServer -startScheduler [<port>]

cmplServer.opt
cmplServerPort = 8008
maxServerTries =3
schedulerServicelntervall = 0.1

The relevant parameters in cmplServer.opt for a CMPLGridScheduler with there default values are shown
below.

CMPL v.1.12 - Manual 89

cmplServerPort = 8008
maxServerTries = 3

schedulerServicelIntervall = 0.1

The default port of the CMPLGridScheduler can be specified by the parameter port. If one wants to run a
CMPLServer on the same computer as the CMPLGridScheduler then the server needs to be started with a dif-
ferent port via command line argument. Since the CMPLGridScheduler has to call functions provided by con-
nected CMPLServers and additionally has to ensure a high availability and failover, the CMPLGridScheduler
repeats failed CMPLServer calls whereby the number of tries are specified by the parameter maxServer-
Tries. There is also a service thread that works permanently after a couple of seconds defined by the
parameter servicelIntervall. Because this service thread is among others responsible for the problem
waiting queue handling on the CMPLGridScheduler it makes sense to choose very short service intervals.

After running one or more CMPLGridSchedulers the involved CMPLServers can be started by typing the com-
mand:

cmplServer -startInGrid [<port>]

start and connect CMPLServer(s) cmplServer.opt

maxServerTries = 3
performancelndex = 1
cmplGridScheduler = http://10.0.1.52:8008 4

/:fi’j cmplServer —startInGrid [<port>] ‘

In addition to the described parameters in cmplServer. opt the following parameters are necessary for
running a CMPLServer in a CMPLGrid.

maxServerTries = 3
performancelIndex = 1
cmplGridScheduler = http://10.0.1.52:8008 4

A CMPLServer in a CMPLGrid also has to call functions provided by a CMPLGridScheduler. Due to maximum
availability and failover the maximum number of tries of failed CMPLGridScheduler calls are to be specified
with the parameter maxServerTries. Assuming heterogeneous hardware for the CMPLServers in a CM-
PLGrid it is necessary for a reasonable load balancing to identify several performance levels of the invoked
CMPLServers. This can be done by the parameter performancelIndex that influences the load balancing
function directly. The involved operators of the CMPLServers and the CMPLGridScheduler(s) should specify
standardised performance classes used within the entire CMPLGrid with the simple rule: the higher the per-
formance class, the higher the performanceIndex. The parameter cmplGridScheduler is intended to
specify the CMPLGridScheduler to which the CMPLServer is to be connected. The first argument is the URL

CMPL v.1.12 - Manual 90

of the scheduler. The second parameter defines the maximum number of problems that the CMPLServer
provides to this CMPLGridScheduler. If a CMPLServer should be connected to more than one scheduler one
entry per CMPLGridScheduler is required. In the following example the CMPLServer will be connected to two
CMPLGridSchedulers with maximally two problems per scheduler.

cmplGridScheduler http://10.0.1.52:8008 2

cmplGridScheduler = http://10.0.1.53:8008 2

While connecting the CMPLGridScheduler the CMPLServer sends its port, the maximum number of provided
problems and its performance index. It receives the status of the CMPLGridScheduler and a serverId. Pos-
sible states for connecting a CMPLServer are CMPLGRID SCHEDULER OK Of CMPLGRID SCHEDULER _ER-
ROR.

Now a client can connect the CMPLGrid in the same way as a client connects a single CMPLServer either by
using the CMPL binary

cmpl <problem>.cmpl -cmplUrl http://<ip-adress-or-Domain>:<port>

or in pyCmpl and jCMPL programmes through the method Cmp1l.connect ().

The client sends automatically the name of the problem and the name of the solver with which the problem
should be solved to the CMPLGridScheduler.

connect client and load balancing

arg max

sEServers
f

{ emptyProblems,

maxProblems,

}- performancelndex,

set of CMPLServers that
provide the demanded solver

If the name of the solver is unknown or this solver is not available in the CMPLGrid the CMPLGridScheduler
returns CMPLSERVER ERROR. In case the problem waiting queue is not empty the problem is then as-
signed to the problem waiting queue and the status is CMPLGRID SCHEDULER BUSY.

Otherwise the CMPLGridScheduler returns the status CMPLGRID SCHEDULER OK, the serverUrl of the
CMPLServer on which the problem will be solved and the job1d of the problem. This CMPLServer is determ-
ined on the basis of the load balancing function that is shown in the picture below. Per server that is provid-
ing the solver the current capacity factor is to be calculated by the relationship between the current empty
problems of this server and the maximum number of provided problems. The number of empty problems is
controlled by the CMPLGridScheduler with a lower bound of zero and an upper bound equal to the maximum
number of provided problems. This parameter is decreased if the CMPLServer is taking over a problem and it

CMPL v.1.12 - Manual 91

is increased when the CMPLServer has finished the problem or the problem is cancelled. The idea is to send
problems tendentiously to those CMPLServer with the highest empty capacity. To include the different per-
formance levels of the invoked CMPLServers in the load balancing decision, the current capacity factor is to
be multiplied by the performance index. The result is the load balancing factor and the CMPLServer with the
highest load balancing factor is assigned to the client to solve the problem. This CMPLServer then gets the
job1d of the CMPL problem by the CMPLGridServer in order to take over all relevant processes to solve this
problem. Afterwards the client is automatically connected to this CMPLServer.

The problem waiting queue handling is organised by the CMPLGrid Scheduler service thread that assigns the
waiting problems automatically to CMPLServers by using the same functionalities as described above. The
waiting clients either ask automatically in the synchronous mode or manually in the asynchronous mode
both through Cmp1l . knock () until the received status is not equal to CMPLGRID SCHEDULER BUSY.

The next steps to solve the problem synchronously or asynchronously on the CMPLServer are similar to the
procedures in the single server mode as shown in the following figure.

send (if status==CMPG RIDSCHEDULER_OK>

Cmplinstance including jobld

status \

knock (until status==PROBLEM_FINISHED)
\ jobld

< status

_o=®
\ﬁs\a“) empup//
200"
e retrieve (if status==PROBLEM_FINISHED)
| /I \ jobld
" CmplSolutions, CmplMessages, Cmplinfo

N\

The methods Cmpl.send (), Cmpl.knock () and Cmpl.retrieve () are used to send the problem to

the CMPLServer, to knock for the current status, to retrieve the solution and the CMPL and the solver mes-
sages and if requested some statistics. The main differences to the single server mode are that the CM-
PLServer calls the CMPLServerGrid to add an empty problem slot after finishing solving the problem and that
the client is disconnected automatically from the CMPLServer after retrieving the solution, messages and
statistics.

The CmplGridScheduler and the CmplServers can be stopped by typing the command:

cmplServer -stop [<port>]

CMPL v.1.12 - Manual 92

3.5.3 Reliability and failover

A distributed optimisation system or a grid optimisation system is usually implemented in a heterogeneous
environment. The network notes can be installed on different hardware as well as on different operating sys-
tems. This fact could cause some disturbances within the optimisation network that should be either
avoided or reduced in their negative impact of the optimisation processes.

Beside ensuring a good performance, maximum reliability and failover are therefore important targets of the
CMPLServer and the CMPLGrid implementations. They are ensured by:

(a) the problem queue handling on the CMPLGridScheduler and the CMPLServer,

(b) multiple executions of failed server calls and

(c) re-connections of problems to the CMPLGridScheduler if an assigned CMPLServer fails.

(a) Problem queue handling

If a problem is connected to a CMPLServer or a CMPLGridScheduler and the number of running problems in-
cluding the model sent is greater than maxProblems, it neither makes sense to cancel the problem nor to
interrupt the solving process. Especially in case of an iterating solving process with a couple of depending
problems it is the better way to refer the supernumerary problems automatically to the problem waiting
queue.

For the single server mode the problem queue handling is organised by the CMPLServer whilst in the grid
mode the CMPLGridScheduler(s) are responsible for it. In both modes a problem stored in the problem wait-
ing queue has to wait until an empty solving slot is available or the maximum queuing time is reached.

In the single server mode the number of problems that can be executed simultaneously on the particular
CMPLServer are defined by the parameter maxproblems in cmplServer.opt. With this parameter it
should be avoided to overwhelm the server and to avoid the super-proportional effort for managing a huge
amount of parallel problems. The first empty solving slot that appears when a running problem is finished or
cancelled, is taking over a waiting problem by using the FIFO approach.

The number of simultaneously running problems in a CMPLGrid is defined by the sum over all connected CM-
PLServer of the maximum number of problems provided by the servers. This parameter is to be defined per
CMPLServer in cmplServer.opt as second argument in the entry cmplGridScheduler = <url>
<maxProblems>. The CMPLGridScheduler counts the number of running problems per CMPLServer in rela-
tion to its maximum number of provided problems. If it is not possible to find a connected CMPLServer with
an empty solving slot then the problem is put to the problem waiting queue. In contrast to the single server
mode the problem which has been waiting longest is not executed by the first appearing free CMPLServer
but it is organised by the described load balancing function over the set of CMPLServers that stated an
empty solving slot during two iterations of the CMPLGridScheduler service thread.

The client’s maximum queuing time in seconds can be specified with the CMPL command line argument -
maxQueuingTime <sec>. This argument can also be set as CMPL header entry $arg -maxQueuing-
Time <sec> or in pyCMPL and jCMPL with the method Cmpl.setOption (“%arg -maxQueuingTime
<sec>") . The default value is 300 seconds.

CMPL v.1.12 - Manual 93

(b) Multiple executions of failed server calls

To avoid that a single execution of a server method, which fails due to network problems like socket errors
or others, cancels the entire process, all failed server calls can be executed again several times. The max-
imum number of executions of failed server calls can be specified for the clients by the CMPL command line
argument -maxServerTries <tries>. It can also be used in a CMPL header entry %arg -max-
ServerTries <tries> or in pyCMPL and jCMPL by using Cmpl.setOption (“%arg -maxServer-
Tries <tries>”). The default value is 10. The number of maximum executions of failed server calls in
the communication between the CMPLGridScheduler and CMPLServers is defined in cmplServer.opt with

the entry maxServerTries = <tries>.

An exemplary and simplified implementation of this behaviour is shown in the pseudo code listing below:

1 serverTries=0

2 while True do

3 try

4 callServerMethod ()

5 except

6 serverTries+=1

7 if serverTries>maxServerTries then
8 status=CMPLSERVER ERROR

9 raise CmplException("calling CmplServer function .. failed")
10 end if

11 end try

12 break

13 end while

In a first step the variable serverTries is assigned zero. The call of the server method (line 4) is imbed-
ded in an infinite loop (lines 2-13) and in a try-except-block for the exception handling (lines 3-11). If no
exception occurs then the loop is finished by the break command in line 12. Otherwise serverTries isin-
cremented by 1. If the maximum number is not exceeded (line 7) the server method is called again (line 4).
If serverTries is greater than maxServerTries then the class variable cmpl.status is set to cMPL-
SERVER ERROR and a CmplException is raised that have to be handled in the code in which the listing
below is imbedded (lines 7-9).

(c) Re-connections of failed problems to the CMPLGridScheduler

Multiple server calls are mainly intended to prevent network problems. But it could be also possible that
other problems caused by CMPLServers connected to a CMPLGridScheduler (e.g. a failed execution of a
solver, file handling problems at a CMPLServer or the unpredictable shutdown of a CMPLServer) occur. The
idea to handle such problems is that if the assigned CMPLServer fails the particular problem is then recon-
nected to the CMPLGridScheduler and is taken over by another CMPLServer automatically.

The following pseudo code listing describes a simplified implementation of Cmpl.solve () only for the grid
mode to illustrate this approach:

CMPL v.1.12 - Manual 94

1 serverTries=0

2 while True do

3 try

4 if status==CMPLSERVER ERROR then

5 CmplGridScheduler. connect ()

6 end if

7

8 if status==CMPLGRID SCHEDULER BUSY then

9 while status<>CMPLGRID SCHEDULER OK do

10 CmplGridScheduler.knock ()

11 if waitingTime () >=maxQueuingTime then
12 raise CmplException("max. queuing time is exceeded.")
13 end if

14 end while

15 end if

16 connectedToServer=True

17

18 CmplServer.send()

19

20 while status<>PROBLEM FINISHED do

21 CmplServer.knock ()

22 end while

23

24 CmplServer.retrieve ()

25 break

26

27 except CmplException

28 serverTries+=1

29 if status==CMPL_ERROR and connectedToServer==True then
30 CmplGridScheduler.cmplServerFailed ()

31 end if

32 if serverTries>maxServerTries or status==CMPLGRID SCHEDULER BUSY then
33 ExceptionHandling ()

34 exit

35 end if

36 end try

37 end while

As in the listing of the multiple server calls the variable serverTries is assigned zero (line 1). The entire
method is also imbedded in an infinite loop (lines 2-37) and the exception handling is organised as try-ex-
cept-block (lines 3-36).

Before Cmpl.solve () is called the client has to execute Cmpl.connect () successfully. Therefore the
class variable Cmpl.status has to be unequal to CMPLSERVER ERROR and an additional Cmpl.con-
nect () is not necessary in the first run of Cmpl.solve ()(lines 4-6).1t is possible that the entire CM-
PLGrid is busy, the status equals CMPLGRID SCHEDULER BUSY and the problem is moved to the CM-
PLGridScheduler problem waiting queue (line 8). In this case the problem has to wait for the next empty

CMPL v.1.12 - Manual 95

solving slot via Cmpl.knock () (line 10) until the CMPLGridScheduler returns the status CMPLGRID SCHE-
DULER OK (line 9) or the waiting time exceeds the maximum queuing time and a CmplException is
raised (lines 11-13).

After this loop the problem is automatically connected to a CMPLServer within the CMPLGrid. The class vari-
able Cmpl.connectedToServer is assigned True (line 16) and the problem is sent to this server
through Cmpl.send () (line 18). The problem then has to wait until the problem status is PROBLEM FIN-
1SHED (lines 20-22). As soon as the problem is finished, the solution(s), the CMPL and the solver messages
as well as (if requested) some statistics can be retrieved via Cmpl.retrieve () (line 24). If no CmplEx-
ception or another exception appeared during this procedures the infinite loop is left by the break com-
mand in line 25.

Otherwise the cmplException or other exceptions have to be handled in the except block in the lines 27-
36. The first step is to increase the number of failed server call tries (line 28). If while executing Cmpl. -
connect (), Cmpl.send (), Cmpl.knock () or Cmpl.retrieve () an exception is raised and the prob-
lem is connected to a CMPLServer then the client calls the CMPLGridScheduler method cmplServer-
Failed () in order to report that this CMPLServer failed and to set the status of this server to inactive on
the CMPLGridScheduler (line 30). This CMPLServer is then excluded from the CMPLGridScheduler load balan-
cing until CMPLGridScheduler's service thread recognises that this CMPLServer is able to take over problems
again.

If the number of failed server calls exceeds the maximum number of tries or the status is
CMPLGRID SCHEDULER BUSY because the maximum queuing time is exceeded (line 32), the entire pro-
cedure stops by doing the necessary exception handling and by exiting the programme (lines 33-34).

Otherwise the problem has to pass the loop again. That means that the problem is reconnected to the CM-
PLGrid via CMPLGridScheduler.connect () (lines 4-6) and the solving process starts again.

3.6 pyCMPL

pyCMPL is the CMPL API for Python and an interactive shell. The main idea of this API is to define sets and
parameters within the user application, to start and control the solving process and to read the solution(s)
into the application if the problem is feasible. All variables, objective functions and constraints are defined in
CMPL. These functionalities can be used with a local CMPL installation or a CMPLServer.

To execute a pyCmpl it is necessary to start the cmplshell script in the CMPL folder that sets the CMPL
environment (PATH, environment variables and library dependencies) and starts a command line window in
which thy pyCmpl script can be executed with the command pyCmpl <problemname>.py.

3.7 jCMPL

jCMPL is the CMPL API for Java. The main idea of this API is similar to pyCMPL to define sets and paramet-
ers within the user application, to start and control the solving process and to read the solution(s) into the
application if the problem is feasible. All variables, objective functions and constraints are defined in CMPL.

CMPL v.1.12 - Manual 96

These functionalities can be used with a local CMPL installation or a CMPLServer.

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link
your application against jCmpl.jar and the following jar files, that you can find in the CMPL application

folder in jCmpl/Libs : commons-lang3, ws-commons-util, =xmplrpc-client, xmlrpc-com-

mons.

Additionally, it is necessary to specify an environment variable CMPLBINARY that contains the full path to
the CMPL binary. This can be done by executing the cmpl1shell script in the Cmpl folder and to run the
Java program in this environment.

3.8 Input and output file formats

3.8.1 Overview

As shown in the picture below CMPL uses several ASCII files for the communication with the user, the solv -
ers and a CMPLServer.

User ‘

results (stdio, ASCII, CmplSolutins, CSV),
CMPL, CmplData CmplMessages, matrix, stasiis
CMPL |
Free-MPS, solver specifi Cmplinstance CmplSolutins,
solver speciti result CmplMessages,
parameter formats Cmplinfo
interfaces
CBC | GLPK | SCIP | Gurobi | Cplex CMPLServer |
Free-MPS, solver speciti
solver speciti result
parameter formats
interfaces
CBC | GLPK | SCIP | Gurobi | Cplex |
CMPL input file for CMPL - syntax as described above
CmplData data file format for CMPL - syntax as described above
Free-MPS output file for the generated model in Free-MPS format
CmplInstance XML file that contains all relevant information about a CMPL model sent to a
CMPLServer
Result files solutions of a CMPL model can be obtained in the form of an ASCII, CSV or
CmplSolutions file
CmplSolutions solutions can be solved in CMPL's XML based solution file format

CMPL v.1.12 - Manual 97

CmplMessages XML file that contains the status and messages of a CMPL model

CmplInfo XML file that contains (if requested) several statistics and the generated matrix of
the CMPL model

To describe the several file types it is necessary to distinguish between the local and the remote mode.

In the local mode a CMPL model and (if existing) the corresponding CmplData files are parsed and translated
into a Free-MPS file (If no syntax or other error occur). If there are some errors in the CMPL model the
CMPL messages are shown automatically or can be saved in a CmplMessages file. The Free-MPS file is to-
gether with solver specific parameter handed over to the chosen solver that is executed directly by CMPL. If
the problem is feasible and an optimal solution is found CMPL reads the solution in form of the solver spe-
cific result format. A CMPL user can now obtain the standard solution report or can save the solution(s) as
ASCII or CSV file or as CmplSolutions file. It is also possible to obtain the generated matrix and some statist-
ics on the screen or in a plain text file.

A user can also process his or her CMPL model remotely on a CMPLServer. In the first step CMPL writes
automatically all model relevant information (CMPL and CmplData files, CMPL and solver options) in a Cm-
plInstance file and sends it to the connected CMPLServer. After solving the model CMPL receives three XML-
based file formats (CmplSolutions, CmplMessages, CmplInfo) and the user can obtain (if a optimal solution is
found) the standard solution report or can save the solution(s) and also can get the generated matrix and
some statistics. If the CMPL model contains errors then the user can retrieve the CMPL messages.

3.8.2 CMPL and CmplData

A CMPL file is an ASCII file that includes the user-defined CMPL code with a syntax as described in this
manual.

The example
15-x,+ 18-x,+ 22-x;-> max !
s.1.
5:x,+10-x,+ 15-x,<175
10-x,+ 5-x,+ 10-x,<200
0<x, ;n=1(1)3

can be formulated with the CmplData file test.cdat

$n set <1..2>
$m set <1..3>

%c[m] < 15 18 22 >

Sb[n] < 175 200 >

SA[n,m] < 510 15
10 5 10 >

and the CMPL file test.cmpl

%data test.cdat
%sarg -solver glpk

variables:

CMPL v.1.12 - Manual 98

x[m]: reallO..]1;
objectives:

profit: c[]T * x[] -> max;
constraints:

res: A[,] * x[] <= Dbl[];

3.8.3 Free - MPS

The Free-MPS-format is internally used for the communication between CMPL and all local installed solvers.

The Free-MPS format is an improved version of the MPS format. There is no standard for this format but it is
widely accepted. The structure of a Free-MPS file is the same as an MPS file. But most of the restricted MPS
format requirements are eliminated, e.g. there are no requirements for the position or length of a field. For
more information please visit the project website of the Ip_solve project. [http://Ipsolve.sourceforge.net]

The Free-MPS file for the given CMP example is generated as follows:

* CMPL - Free-MPS - Export

NAME test.cmpl
ROWS
N profit
L res[l]
L res[2]
COLUMNS
x[1] profit 15 res[l] 5
x[1] res([2] 10
x[2] profit 18 res[1l] 10
x[2] res[2] 5
x[3] profit 22 res[1l] 15
x[3] res([2] 10
RHS
RHS res[1l] 175 res([2] 200
RANGES
BOUNDS

PL BOUND x[1]

PL BOUND x[2]

PL BOUND x[3]
ENDATA

3.8.4 CmplInstance
CmplInstance is an XML-based format that contains all relevant information about a CMPL model (CMPL and
CmplData files, CMPL and solver options) to be sent to a CMPLServer.

A CmplInstance file consists of three major sections. The <general> section contains the name of the
problem and the jobld that is received automatically during connecting the CMPLServer. The <options>
section consists of the CMPL and solver options that a user has specified on the command line. The <prob-

CMPL v.1.12 - Manual 99

lemFiles> section is indented to store the CMPL file and all corresponding CmplData files. All CmplData
files no matter whether they are specified within the CMPL model or as command line argument are auto-
matically included in the CmplInstance file. To avoid some misinterpretation of some special characters while
reading the CmplInstance on the CMPLServer the content of the CMPL model and the CmplData files are
automatically unescaped by CMPL.

The XSD (XML Schema Definition) of CmplInstance is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema elementFormDefault="qualified” xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="CmplInstance">
<xs:complexType>
<XS:sequence>
<xs:element ref="general" minOccurs="1" maxOccurs="1" />
<xs:element ref="options"” minOccurs="0" maxOccurs="1"/>
<xs:element ref="problemFiles" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
<xs:attribute name="version" type="xs:decimal" use="required"/>
</xs:complexType>
</xs:element>

<xs:element name="general ">
<xs:complexType>
<XS:sequence>
<xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="jobId" type="xs:string" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="options"
<xs:complexType>
<XS:sequence>
<xs:element name="opt" type="xs:string” minOccurs="0" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="problemFiles">
<xs:complexType>
<XS:sequence>
<xs:element ref="file" minOccurs="1" maxOccurs="unbounded" />
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="file">

<xs:complexType>

<xs:simpleContent>

CMPL v.1.12 - Manual 100

<xs:extension base="xs:string"
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="type" type="fileType" use="required"/>
</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>

<xs:simpleType name="fileType">
<xs:restriction base="xs:string"
<xs:enumeration value="cmpIMain"/>
<xs:enumeration value="cmplData"/>
</Xs:restriction>

</xs:simpleType>

</xs:schema>

For the given example the CmplInstance file test.cinst is created automatically by CMPL through by us-
ing the command line arguments -matrix "test.mat" -s "test.stat" and the model is executed
remotely on a CMPLServer.

<?xml version = "1.0" encoding="UTF-8" standalone="yes"?>
<CmplInstance version="1.0">

<general>

<name>test.cmpl</name>
<jobId>10.0.1.2-2014-01-05-17-05-23-496795</jobId>
</general>

<options>

<opt >%arg -matrix "test.mat"</opt>

<opt>%arg -s "test.stat"</opt>

</options>

<problemFiles>

<file name="test.cmpl" type="cmplMain">

%data test.cdat

%arg -solver glpk

%arg -cmplUrl http://10.0.1.2:8008

variables:
x[m]: reallO..];
objectives:
profit: c[]T * x[] -> max;
constraints:
res: A[,] * x[] <= bl[];
</file>
<file name="test.cdat" type="cmplData">
%n set <1l..2>
gm set <1..3>

CMPL v.1.12 - Manual 101

o

c[m] < 15 18 22 >
b[n] < 175 200 >
Aln,m] &1t; 5 10 15

10 5 10 >
</file>
</problemFiles>

o\°

%

</CmplInstance>

3.8.5 ASCII or CSV result files

If the problem is feasible and an optimal solution is found a user can obtain this optimal solution in the form
of an ASCI or CSV file by using the command line arguments -solutionAscii [<file>] Or -solu-
tionCsv [<file>]. This files can additionally contain all integer feasible solutions if Cplex or Gurobi are
used and the the CMPL header option $display solutionPool is defined.

The ASCII result file test.sol for the given CMPL example is generated as follows:

Problem test.cmpl

Nr. of variables 3

Nr. of constraints 2

Objective name profit

Solver name GLPK

Display variables (all)

Display constraints (all)

Objective status optimal

Objective value 405 (max!)

Variables

Name Type Activity Lower bound Upper bound Marginal
x[1] C 15 0 Infinity 0
x[2] C 10 0 Infinity 0
x[3] C 0 0 Infinity -7
Constraints

Name Type Activity Lower bound Upper bound Marginal
res[1] L 175 -Infinity 175 1.4
res[2] L 200 -Infinity 200 0.8

The corresponding CSV result file test.csv is generated as follows:

CMPL csv export

Problem; test.cmpl

Nr. of variables;3

Nr. of constraints;2
Objective name;profit
Objective sense;max
Solver;GLPK

Display variables; (all)

Display constraints; (all)

CMPL v.1.12 - Manual 102

Objective status;optimal

Objective value;405

Variables;

Name; Type;Activity;LowerBound; UpperBound;Marginal
x[1]1;C;15;0;Infinity;0

x[2];C;10;0;Infinity;0

x[3]1;C;0;0;Infinity;-7

Constraints;

Name; Type;Activity; LowerBound; UpperBound;Marginal
res[1l];L;175;-Infinity;175;1.4
res([2];L;200;,-Infinity;200;0.8

3.8.6 CmplSolutions

CmplSolutions is an XML-based format for representing the general status and the solution(s) if the problem
is feasible and one or more solutions are found. A user can save it by using the command line argument -
solution [<File>]. Itis also internally used for receiving solution(s) from a CMPLServer.

As shown in the corresponding XSD below A CmplSolutions file contains a <general> block for general in-
formation about the solved problem and a <solutions> block for the results of all solutions found includ-
ing the variables and constraints.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="CmplSolutions">
<xs:complexType>
<XS:sequence>
<xs:element ref="general” minOccurs="1" maxOccurs="1"/>
<xs:element ref="solution" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="version" use="required" type="xs:decimal"/>
</xs:complexType>

</xs:element>

<xs:element name="general ">
<xs:complexType>
<XS:sequence>
<xs:element name="instanceName" type="xs:string" minOccurs="1" maxOccurs="1" />
<xs:element name="nrOfVariables" type="xs:nonNegativeInteger" minOccurs="1" maxOccurs="1"/>
<xs:element name="nrOfConstraints" type="xs:nonNegativelnteger" minOccurs="1" maxOccurs="1"
/>

<xs:element name="objectiveName" type="xs:string" minOccurs="1" maxOccurs="1" />
<xs:element name="objectiveSense" type="xs:string” minOccurs="1" maxOccurs="1" />
<xs:element name="nrOfSolutions" type="xs:nonNegativelnteger" minOccurs="1" maxOccurs="1"/>
<xs:element name="solverName" type="xs:string” minOccurs="1" maxOccurs="1" />
<xs:element name="variablesDisplayOptions" type="xs:string" minOccurs="1" maxOccurs="1" />

CMPL v.1.12 - Manual 103

<xs:element name="constraintsDisplayOptions" type="xs:string” minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
</Xxs:complexType>

</xs:element>

<xs:element name="solution">
<xs:complexType>
<XS:sequence>
<xs:element ref="variables" minOccurs="1" maxOccurs="1"/>
<xs:element ref="linearConstraints" minOccurs="1" maxOccurs="1" />
</Xs:sequence>
<xs:attribute name="idx" use="required” type="xs:nonNegativelnteger"/>
<xs:attribute name="status" use="required" type="xs:string"/>
<xs:attribute name="value" use="required" type="xs:decimal"/>
</xs:complexType>

</xs:element>

<xs:element name="variables">
<xs:complexType>
<XS:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="variable"/>
</Xs:sequence>
</Xxs:complexType>

</xs:element>

<xs:element name="linearConstraints">
<xs:complexType>
<XS:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="constraint"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="variable">

<xs:complexType>
<xs:attribute name="idx" use="required” type="xs:nonNegativeInteger"/>
<xs:attribute name="name" use="required" type="xs:string"/>
<xs:attribute name="type" use="required" type="varType"/>

<xs:attribute name="activity" use="required" type="xs:double"/>

<xs:attribute name="IlowerBound" use="required" type="xs:double"/>
<xs:attribute name="upperBound" use="required" type="xs:double"/>
<xs:attribute name="marginal" use="required" type="xs:double"/>

</xs:complexType>

</xs:element>

<xs:element name="constraint">
<xs:complexType>
<xs:attribute name="idx" use="required” type="xs:nonNegativeInteger"/>
<xs:attribute name="name" use="required" type="xs:string"/>

CMPL v.1.12 - Manual 104

<xs:attribute name="type" use="required" type="conType"/>
<xs:attribute name="activity" use="required" type="xs:double"/>
<xs:attribute name="lowerBound" use="required" type="xs:double"/>
<xs:attribute name="upperBound" use="required" type="xs:double"/>
<xs:attribute name="marginal" use="required" type="xs:double"/>
</xs:complexType>

</xs:element>

<xs:simpleType name="varType">
<xs:restriction base="xs:string"
<xs:enumeration value="C"/>
<xs:enumeration value="I"/>
<xs:enumeration value="B"/>
</Xxs:restriction>

</xs:simpleType>

<xs:simpleType name="conType">
<xs:restriction base="xs:string"
<xs:enumeration value="L"/>
<xs:enumeration value="E"/>
<xs:enumeration value="G"/>
</Xxs:restriction>

</xs:simpleType>

</Xs:schema>

The CmplSolutions file test.csol for the given CMPL example is generated as follows:

<?xml version = "1.1" encoding="UTF-8" standalone="yes"?>
<CmplSolutions version="1.0">
<general>
<instanceName>test.cmpl</instanceName>
<nrOfVariables>3</nrOfVariables>
<nrOfConstraints>2</nrOfConstraints>
<objectiveName>profit</objectiveName>
<objectiveSense>max</objectiveSense>
<nrOfSolutions>1</nrOfSolutions>
<solverName>GLPK</solverName>
<variablesDisplayOptions>(all)</variablesDisplayOptions>
<constraintsDisplayOptions>(all)</constraintsDisplayOptions>
</general>
<solution idx="0" status="optimal" value="405">
<variables>
<variable idx="0" name="x[1]" type="C" activity="15" lowerBound="0"
upperBound="Infinity" marginal="0"/>
<variable idx="1" name="x[2]" type="C" activity="10" lowerBound="0"
upperBound="Infinity" marginal="0"/>

<variable idx="2" name="x[3]" type="C" activity="0" lowerBound="0"

CMPL v.1.12 - Manual 105

upperBound="Infinity" marginal="-7"/>
</variables>
<linearConstraints>
<constraint i1dx="0" name="res[1l]" type="L" activity="175"
lowerBound="-INF" upperBound="175" marginal="1.4"/>
<constraint idx="1" name="res[2]" type="L" activity="200"
lowerBound="-INF" upperBound="200" marginal="0.8"/>
</linearConstraints>
</solution>
</CmplSolutions>

3.8.7 CmplMessages

CmplMessages is an XML-based format for representing the general status and/or errors of the transforma-
tion of a CMPL model in one of the described output files. CmplMessages is intended for communication with
other software that uses CMPL for modelling linear optimisation problems and can be obtained by the com-
mand line argument -e [<file>].

It is also internally used for receiving CMPL messages from a CMPLServer.

An CmplMessages file consists of two major sections. The <general> section describes the general status
and the name of the model and a general message after the transformation. The <messages> section con-
sists of one or more messages about specific lines in the CMPL model.

The XSD is defined as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="CmplMessages">
<xs:complexType>
<XS:sequence>
<xs:element ref="general” minOccurs="1" maxOccurs="1"/>
<xs:element ref="messages" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="version" use="required" type="xs:decimal"/>
</xs:complexType>

</xs:element>

<xs:element name="general ">
<xs:complexType>
<XS:sequence>
<xs:element name="generalStatus" type="xs:string"” minOccurs="1" maxOccurs="1"/>
<xs:element name="instanceName" type="xs:string"” minOccurs="1" maxOccurs="1"/>
<xs:element name="message" type="xs:string"” minOccurs="0" maxOccurs="1"/>
</Xs:sequence>

</xs:complexType>

</xs:element>

CMPL v.1.12 - Manual 106

<xs:element name="messages">
<xs:complexType>
<XS:sequence>
<xs:element ref="message" minOccurs="0" maxOccurs="unbounded"/>
</Xs:sequence>
<xs:attribute name="numberOfMessages" use="required" type="xs:nonNegativelnteger"/>
</xs:complexType>

</xs:element>

<xs:element name="message'">
<xs:complexType>
<xs:attribute name="type" type="msgType" use="required"/>
<xs:attribute name="file" type="xs:string" use="required"/>
<xs:attribute name="line" type="xs:nonNegativelnteger" use="required"/>
<xs:attribute name="description” type="xs:string" use="required"/>
</xs:complexType>

</xs:element>

<xs:simpleType name="msgType">
<xs:restriction base="xs:string">
<xs:enumeration value="error"/>
<xs:enumeration value="warning"/>
</Xs:restriction>

</xs:simpleType>

</Xs:schema>

After excecuting the given CMPL model, CMPL will finish without errors. The general status is repres-
ented in the following CmplMesages file test.cmsg.

<?xml version="1.0" encoding="UTF-8"?>
<CmplMessages version="1.1">
<general>
<generalStatus>normal</generalStatus>
<instanceName>test.cmpl</instanceName>
<message>cmpl finished normal</message>

</general>

</CmplMessages>

If a wrong symbol name for the matrix 2[,] (e.g. a[,]) is used in line 11, CMPL would be finish with er-
rors represented in CmplMesages file test.cmsg.

<?xml version="1.0" encoding="UTF-8"?>
<CmplMessages version="1.1">
<general>
<generalStatus>error</generalStatus>

<instanceName>test.cmpl</instanceName>

<message>cmpl finished with errors</message>

CMPL v.1.12 - Manual 107

</general>
<messages numberOfMessages="1">
<message type ="error" file="test.cmpl" line="11"
description="syntax error, unexpected SYMBOL UNDEF"/>
</messages>

</CmplMessages>

3.8.8 CmpllInfo

CmplInfo is a simple XML file that contains as shown in the XSD below (if requested) several statistics and
the generated matrix of the CMPL model.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"

<xs:element name="CmplInfo">
<xs:complexType>
<XS:sequence>
<xs:element ref="general” minOccurs="1" maxOccurs="1"/>
<xs:element ref="statistics"” minOccurs="0" maxOccurs="1"/>
<xs:element ref="matrix" minOccurs="0" maxOccurs="1"/>
</Xs:sequence>
<xs:attribute name="version" use="required" type="xs:decimal"/>
</xs:complexType>

</xs:element>

<xs:element name="general ">
<xs:complexType>
<XS:sequence>
<xs:element name="instancename" type="xs:string" minOccurs="1" maxOccurs="1"/>
</Xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="statistics">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string"
<xs:attribute name="file" use="required" type="xs:string"/>
</Xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>

<xs:element name="matrix">
<xs:complexType>
<xs:simpleContent>
<xs:extension base="xs:string"

<xs:attribute name="file" use="required" type="xs:string"/>

CMPL v.1.12 - Manual 108

</xs:extension>
</xs:simpleContent>
</xs:complexType>

</xs:element>

</xs:schema>

For the example the Cmpllnstance file test.cinfo is created automatically by CMPL by using the com-

mand line arguments -matrix "test.mat" -s "test.stat" and the model is executed remotely on a
CMPLServer.

<?xml version="1.0" encoding="UTF-8"?>

<CmplInfo version="1.0">
<general>
<instancename>test.cmpl</instancename>
<general>

<statistics file="test.stat">

File: /Users/mike/CmplServer/10.0.1.2-2014-01-05-17-05-23-496795/test.cmpl
3 Columns (variables), 3 Rows (constraints + objective function)

6 (100%) of 6 coefficients of the constraints are non-zero.

</statistics>

<matrix file="test.mat">

Variable name x[1] x[2] x[3]
Variable type C C C
profit max 15 18 22

Subject to RHS
res[1] L 5 10 15 175
res[2] L 10 5 10 200
Lower Bound 0 0 0

Upper Bound

</matrix>
</CmplInfo>

4 CMPL's APIs

CMPL provides two APIs: pyCMPL for Python and jCMPL for Java.

The main idea of this APIs is to define sets and parameters within the user application, to start and control
the solving process and to read the solution(s) into the application if the problem is feasible. All variables,
objective functions and constraints are defined in CMPL. These functionalities can be used with a local CMPL
installation or a CMPLServer.

CMPL v.1.12 - Manual 109

The structure and the classes including the methods and attributes are mostly identical or very similar in
both APIs. The main difference are the attributes of a class that can be obtained in pyCmpl by r/o attributes
and in jCMPL by getter methods.

4.1 Creating Python and Java applications with a local CMPL installation

pyCMPL and jCMPL contain a couple of classes to connect a Python or Java application with CMPL as shown
in the figure below.

The classes CmplSet and CmplParameter are intended to define sets and parameters that can be used
with several cmp1l objects. With the cmp1l class it is possible to define a CMPL model, to commit sets and
parameters to this model, to start and control the solving process and to read the CMPL and solver mes-
sages and to have access to the solution(s) via CmplMessages and CmplSolutions objects.

Application
Cmpl solution(s) CMPL Statistcs and
model data .
model solver messages messages generated matrix
N
O
CmplSet —» CmplParameter 3
1 2
m
x
o
D
=
» Cmpl CmplSolution CmplMessages Cmplinfo o
pyCMPL, P 3
jCMPL 3 3 L
CMPL model, CmplData file(s), — .
CMPL options, solver options CmplSolutions CmplMessages Cmplinfo
CMPL

(supported solvers: CBC, GLPK, SCIP, Gurobi, Cplex)

To illustrate the formulation of a pyCmpl script and the corresponding java programme an example taken
from (Hillier/Liebermann 2010, p. 334f.) is used. Consider a simple assignment problem that deals with the
assignment of three machines to four possible locations. There is no work flow between the machines. The
total material handling costs are to be minimised. The hourly material handling costs per machine and loca-
tion are given in the following table.

Locations
1 2 3 4
1 13 16 12 11
Machines 2 15 - 13 20
3 5 7 10 6

CMPL v.1.12 - Manual 110

The mathematical model

Z c;X; ~>min!

(i, j)e4
S.t.
x, =1 ;i=1(1)m
(k,j)e4
k=i
Y =<l ;j=1(1)n
(i,1)e4
I=j

x;€[0,1} (i, j)eA

with
Parameters
A - set of the possible combination of machines and locations
m - number of machines
n - number of locations
¢y - hourly material handling costs of machine i at location j
Variables
X, - assignment variable of machine i at location j

can be formulated in CMPL as follows:

%$data : machines set, locations set, A set[2], c[A]

variables:

x[A]: binary;

objectives:

costs: sum{ [i,]] in A : c[i,]l*x[1i,J] } -> min ;

constraints:
sos m { i in machines: sum{ j in (A *> [1i,*]) : x[i,3] } =1; }
sos 1 { j in locations: sum{ i in (A *> [*,3J]) : x[i,3] } <= 1; }

The interface for the sets and parameters provided by a pyCmpl script or jCMPL programme is the CMPL
header entry %data.

4.1.1 pyCMPL

The first step to formulate this problem as a pyCmpl script after importing the pyCmpl package is to create a
Cmpl object where the argument of the constructor is the name of the CMPL file.

#!/usr/bin/python
from pyCmpl import *

m = Cmpl ("assignment.cmpl")

As in the $data entry two 1-tuple sets machines and locations and one 2-tuple set A are necessary for
the CMPL model. To create a Cmpl1Set a name and for n-tuple sets with n>1 the rank are needed as argu-

CMPL v.1.12 - Manual 111

ments for the constructor. The name has to be identical to the corresponding name in the CMPL header
entry $data. The set data is specified by the cmp1set method setvalues. This is an overloaded method
with different arguments for several types of sets.

locations = CmplSet ("locations")

locations.setValues (1, 4)

machines = CmplSet ("machines")

machines.setValues (1, 3)

combinations = CmplSet ("A", 2)
combinations.setValues ([[1,11,11,21,11,31,11,41, [2,11,12,31,12,41,\
[(3,11,103,2],1[3,31,[3,411)

As shown in the listing above the set 1ocations is assigned (1,2, ..,4) and the set machines consists
of (1,2,3) because the first argument of setvalues for this kind of sets is the starting value and the
second argument is the end value while the increment is by default equal to one. The values of the 2-tuple
set combinations are defined in the form of a list that consists of lists of valid combinations of machines
and locations.

For the definition of a CMPL parameter a user has to create a CmplParameter object where the first argu-
ment of the constructor is the name of the parameter. If the parameter is an array it is also necessary to
specify the set or sets through which the parameter array is defined. Therefore it is necessary to commit the
CmplSet combinations (beside the name "c") to create the CmplParameter array c .

c = CmplParameter ("c",combinations)
c.setValues([13,16,12,11,15,13,20,5,7,10,6])

CmplSet objects and CmplParameter objects can be used in several CMPL models and have to be com-
mitted to a cmp1 model by the cmpl methods setSets and setParameters. After this step the problem
can be solved by using the cmpl method solve.

m.setSets (machines, locations, combinations)

m.setParameters (c)

m.solve ()

After solving the model the status of CMPL and the invoked solver can be analysed through the cmp1 attrib-

utes solution.solverStatus and solution.cmplStatus.

print "Objective value: " , m.solution.value

print "Objective status: " , m.solution.status

If the problem is feasible and a solution is found it is possible to read the names, the types, the activities,
the lower and upper bounds and the marginal values of the variables and the constraints into the Python ap-
plication. The cmpl attributes solution.variables and solution.constraints contain a list of
variable and constraint objects.

print "Variables:"

CMPL v.1.12 - Manual 112

for v in m.solution.variables:

print v.name, v.type, v.activity,v.lowerBound, v.upperBound

print "Constraints:"

for ¢ in m.solution.constraints:

print c.name, c.type, c.activity,c.lowerBound, c.upperBound

pyCmpl provides its own exception handling through the class CmplException that can be used ina try
and except block.

try:

except CmplException, e:

print e.msg

The entire pyCmpl script assignment.py shows as follows:

#!/usr/bin/python
from pyCmpl import *

try:

m = Cmpl ("assignment.cmpl")

locations = CmplSet ("locations")

locations.setValues (1, 4)

machines = CmplSet ("machines")

machines.setValues (1, 3)

combinations = CmplSet ("A", 2)
combinations.setValues ([(1,11,11,21,101,31,101,471,\
(2,11,102,31,12,4]1,13,1],1[3,2],1[3,31,(3,41])

Q

= CmplParameter ("c",combinations)
c.setValues([13,16,12,11,15,13,20,5,7,10,61])

m.setSets (machines, locations, combinations)

m.setParameters (c)

m.solve ()
print "Objective value: " , m.solution.value
print "Objective status: " , m.solution.status

print "Variables:"
for v in m.solution.variables:

print v.name, v.type, v.activity, v.lowerBound, v.upperBound

print "Constraints:"

CMPL v.1.12 - Manual 113

for ¢ in m.solution.constraints:

print c.name, c.type, c.activity, c.lowerBound, c.upperBound

except CmplException, e:

print e.msg

and can be executed by typing the command

pyCmpl assignment.py

under Linux and Mac in the terminal or under Windows in the CmplShell and prints the following solution to
stdOut.

Objective value: 29.0
Objective status: optimal
Variables:

x[1,1] B 0.0 0.0 1.0
x[1,2] B 0.0 0.0 1.0
x[1,3] B 0.0 0.0 1.0
x[1,4] B 1.0 0.0 1.0
x[2,1] B 0.0 0.0 1.0
x[2,3] B 1.0 0.0 1.0
x[2,4] B 0.0 0.0 1.0
x[3,1] B 1.0 0.0 1.0
x[3,2] B 0.0 0.0 1.0
x[3,3] B 0.0 0.0 1.0
x[3,4] B 0.0 0.0 1.0
Constraints:

sos m[1l] E 1.0 1.0 1
sos m[2] E 1.0 1.0

sos m[(3] E 1.0 1.0

sos 1[1] L 1.0 -inf 1.0
sos 1[2] L 0.0 -inf 1.0
sos 1[3] L 1.0 -inf 1.0
sos 1[4] L 1.0 -inf 1.0

4.1.2 jCMPL

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link
your application against jCcmpl.jar and the following jar files, that you can find in the CMPL applicatiopn
folder in jCmpl/Libs : commons-lang3, ws-commons-util, xmplrpc-client, xmlrpc-com-

mons.

The first step to formulate this problem as a jCmpl programme after importing the jCmpl package is to cre-
ate a Cmp1 object where the argument of the constructor is the name of the CMPL file. Since jCMPL provides
it own exception handling the main method has to throw Cmpl1Exeptions.

CMPL v.1.12 - Manual 114

import jCMPL.*;

public class Assignment {
public static void main(String[] args) throws CmplException {
try |

Cmpl m = new Cmpl ("assignment.cmpl");

As in pyCMPL to create a Cmp1Set a name and for n-tuple sets with n>1 the rank are needed as arguments
for the constructor whereby the name has to be identical to the corresponding name in the CMPL header
entry $data. The set data is specified by the CmplSet.setvalues (). This is an overloaded method with
different arguments for several types of sets.

CmplSet locations = new CmplSet ("locations");

locations.setValues (1, 4);

CmplSet machines = new CmplSet ("machines");

machines.setValues (1, 3);

CmplSet combinations = new CmplSet ("A", 2);
int[][] combivals = { {1, 1}, {1, 2}, {1, 3}, {1, 4}, {2, 1},

{2, 3y, {2, 4}y, {3, 1}, {3, 2}, {3, 3}, {3, 4}};
combinations.setValues (combiVals) ;

In the listing above the set locations is assigned (1,2,..,4) and the set machines consists of
(1,2,3). The first argument of setvalues for this algorithmic sets is the starting value and the second
argument is the end value while the increment is by default equal to one. The values of the 2-tuple set com-
binations are defined in the form of a matrix of integers that consists all valid combinations of machines
and locations.

To create a CMPL parameter a user has to define a CmplParameter object whereby the first argument of
the constructor is the name of the parameter. For parameter arrays it is also necessary to specify the set or
sets through which the parameter array is defined. Therefore it is necessary to commit the cmplSet com-
binations (beside the name "c") to create the CmplParameter array c .

CmplParameter costs = new CmplParameter ("c", combinations);
int([] costVals = {13, 1lo¢, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues (costVals) ;

In the next step the sets and parameters have to be committed to a cmpl model by the cmpl methods
setSets and setParameters and the problem can be solved by using the cmpl method solve.

m.setSets (machines, locations, combinations);

m.setParameters (costs) ;

m.solve () ;

After solving the model the status of CMPL and the invoked solver can be analysed through the methods

Cmpl.solution () .solverStatus ()and Cmpl.solution() .cmplStatus().

CMPL v.1.12 - Manual 115

System.out.printf ("Objective value: %f %n", m.solution () .value());
s

System.out.printf ("Objective status: %s %n", m.solution().status());

If the problem is feasible and a solution is found it is possible to read the names, the types, the activities,
the lower and upper bounds and the marginal values of the variables and the constraints into the Python ap-
plication. The methods Cmpl.solution().variables() and Cmpl.solution().constraints ()
return a list of variable and constraint objects.

System.out.println ("Variables:");
for (CmplSolElement v : m.solution().variables()) {
System.out.printf ("$10s %$3s %10d %10.0f %10.0f%n", v.name(), v.typel(),

v.activity(), v.lowerBound(), v.upperBound()):
}
System.out.println ("Constraints:");
for (CmplSolElement ¢ : m.solution().constraints()) {

System.out.printf ("%$10s %$3s %10.0f %10.0f %10.0£f%n", c.name(), c.typel(),
c.activity(), c.lowerBound(), c.upperBound());

}

The entire jCmpl programme assignment.java shows as follows:

import jCMPL.*;

public class Assignmentl {
public static void main(String[] args) throws CmplException {
try {
Cmpl m = new Cmpl ("assignment.cmpl");

CmplSet locations = new CmplSet ("locations");

locations.setValues (1, 4);

CmplSet machines = new CmplSet ("machines");

machines.setValues (1, 3);

CmplSet combinations = new CmplSet ("A", 2);
int[][] combivals = { {1, 1}, {1, 2}, {1, 3}, {1, 4},{2, 1}, {2, 3},
{2, 4},{3, 1}, {3, 2}, {3, 3}, {3, 4}};

combinations.setValues (combiVals) ;
CmplParameter costs = new CmplParameter ("c", combinations);
int([] costVals = {13, 1o, 12, 11, 15, 13, 20, 5, 7, 10, 6};

costs.setValues (costVals) ;

m.setSets (machines, locations, combinations);

m.setParameters (costs) ;

m.solve () ;

CMPL v.1.12 - Manual 116

o

System.out.printf ("Objective value: f %n", m.solution() .value());
S

System.out.printf ("Objective status: %s %n", m.solution().status());

System.out.println ("Variables:");

for (CmplSolElement v : m.solution().variables()) {
System.out.printf ("%10s %$3s %10d %10.0f %10.0£f%n", v.name(),

v.type(), v.activity(), v.lowerBound(), v.upperBound()):;
}
System.out.println ("Constraints:");
for (CmplSolElement ¢ : m.solution().constraints()) {
System.out.printf ("%$10s %3s %$10.0f %$10.0f %10.0£%n", c.name(),
c.type(), c.activity(), c.lowerBound(), c.upperBound()):

}
} catch (CmplException e) {

System.out.println(e);

}

and prints after starting the following solution to stdOut.

Objective value: 29.000000

Objective status: optimal

Variables:
x[1,1] B 0 0 1
x[1,2] B 0 0 1
x[1,3] B 0 0 1
x[1,4] B 1 0 1
x[2,1] B 0 0 1
x[2,3] B 1 0 1
x[2,4] B 0 0 1
x[3,1] B 1 0 1
x[3,2] B 0 0 1
x[3,3] B 0 0 1
x[3,4] B 0 0 1
Constraints:
sos m[1] E 1 1 1
sos _m[2] E 1 1 1
sos m[3] E 1 1 1
sos_1[1] L 1 -Infinity 1
sos_1[2] L 0 -Infinity 1
sos 1[3] L 1 -Infinity 1
sos_1[4] L 1 -Infinity 1

CMPL v.1.12 - Manual 117

4.2 Creating Python and Java applications using CMPLServer

The class cmp1 also provides the functionality to communicate with a CMPLServer or a CMPLGridScheduler
whereas it doesn't matter for the client whether it is connected to a single CMPLServer or to a CMPLGrid. As
shown in the figure below the first step to communicate with a CMPLServer is the Cmpl.connect method
that returns (if connected) a job1d. After connecting, a problem can be solved synchronously or asynchron-

ously.
Application
| | | 4
model data model data Cmpl solution(s), messages,
| | model statistcs, matrix
v v v I
D_I_ CmplSet » CmplParameter | Cmpl
=
3 |
) | |
o
% connect solve send knock retrieve
>
o S VN VN V' N S
ol 219 5y ald
ol §l2o ¢ 5% o
) - c| E|lwn b= @ n - 0 - Elwn =
£ e 2[3sle= ®© 2 35 = 3| 3lE =
g o = %] 2 g‘ = S (o] 4(3 o [%) E g’
- ol ala Q v - w -l ala
El E|lg“ E Elg
Ol O|lG o Q1o
v v
CMPLServer (XML-RPC)
[+ 5 Z
CMPL model, CmplData file(s) = CmplSolutions CmplMessages statistics, matrix
h 4 | | |
CMPL
(supported solvers: CBC, GLPK, SCIP, Gurobi, Cplex)

The Cmpl method solve sends a CmplInstance string to the connected CMPLServer and waits for the
returning CmplSolutions, CmplMessages and if requested Cmplinfo XML strings. After this syn-
chronous process a user can access the solution(s) if the problem is feasible or if not it can be analysed,
whether the CMPL formulations or the solver is the cause of the problem. To execute the solving process
asynchronously the cmpl methods send, knock and retrieve have to be used. Cmpl.send sends a
CmplInstance string to the CMPLServer and starts the solving process remotely. Cmp1l.knock asks for a
CMPL model with a given jobId whether the solving process is finished or not. If the problem is finished the
CmplSolutions and the CmplMessages strings can be read into the user application with Cmpl.re-

trieve.

CMPL v.1.12 - Manual 118

4.2.1 pyCMPL

The first step to create a distributed optimisation application is to start the CMPLServer. Assuming that a
CMPLServer is running on 194.95.45.70:8008 the assignment problem can be solved remotely only by in-
cluding

m.connect ("http://194.95.45.70:8008")

in the source code before cmpl.solve is executed.

The pyCmpl script assignment-remote.py shows as follows:

#!/usr/bin/python
from pyCmpl import *
try:

m = Cmpl ("assignment.cmpl")

locations = CmplSet ("locations™)

locations.setValues (1, 4)

machines = CmplSet ("machines")

machines.setValues (1, 3)

combinations = CmplSet ("A", 2)
combinations.setValues ([(1,11,11,21,101,31,11,471,\
[(2,11,12,31,12,41,103,1], 1

Q

= CmplParameter ("c",combinations)
c.setValues([13,16,12,11,15,13,20,5,7,10,6])

m.setSets (machines, locations, combinations)

m.setParameters (c)

m.connect ("http://194.95.45.70:8008")

m.solve ()
print "Objective value: " , m.solution.value
print "Objective status: " , m.solution.status

print "Variables:"
for v in m.solution.variables:

print v.name, v.type, v.activity,v.lowerBound, v.upperBound
print "Constraints:"
for ¢ in m.solution.constraints:

print c.name, c.type, c.activity,c.lowerBound, c.upperBound

except CmplException, e:

print e.msg

CMPL v.1.12 - Manual 119

4.2.2 jCMPL

The jCMPL programme assignment-remote.java shows as follows:

import jCMPL.*;

public class Assignmentl {

try |

Cmpl m = new Cmpl ("assignment.cmpl");

CmplSet locations = new CmplSet ("locations");

locations.setValues (1, 4);

CmplSet machines = new CmplSet ("machines");

machines.setValues (1, 3);

CmplSet combinations = new CmplSet ("A", 2);

combinations.setValues (combiVals) ;

int[] costvals = {13, 16, 12, 11, 15, 13, 20, 5, 7, 10

costs.setValues (costVals) ;

m.setSets (machines, locations, combinations);

m.setParameters (costs) ;

m.connect ("http://194.95.45.70:8008") ;

m.solve () ;

v.type(), v.activity (), v.lowerBound(),
}
System.out.println ("Constraints:");
for (CmplSolElement ¢ : m.solution().constraints()) {

System.out.printf ("$10s %$3s %10.0f $10.0f %10.0f%n",

c.type(), c.activity(), c.lowerBound(),

public static void main(String[] args) throws CmplException {

int[][] combiVvals = {{1, 1}, {1, 2}, {1, 3}, {1, 4},{2, 1}, {2, 3},
{2, 4},(3, 1}, {3, 2}, {3, 3}, {3, 4}};

CmplParameter costs = new CmplParameter ("c", combinations);

, 6}

System.out.printf ("Objective value: $%f %n", m.solution () .value());
System.out.printf ("Objective status: %$s %n", m.solution().status());
System.out.println ("Variables:");

for (CmplSolElement v : m.solution().variables()) {

System.out.printf ("%10s %$3s %10d %10.0f %10.0£f%n", v.name(),

v.upperBound()) ;

c.name (),

c.upperBound ()) ;

CMPL v.1.12 - Manual 120

} catch (CmplException e) {

System.out.println(e);

4.3 pyCMPL reference manual

4.3.1 CmplSets

The class cmp1lset is intended to define sets that can be used with several cmp1 objects.
Methods:

CmplSet (setName [, rank])

Description: Constructor

Parameter: str setName name of the set, Has to be equal to the corresponding name
in the CMPL model.
int rank optional - rank n for a n-tuple set (default 1)
Return: CmplSet object

CmplSet.setValues (setList)

Description: Defines the values of an enumeration set
Parameter: list setList for a set of n-tuples with n=1 - 11ist of single indexing

entries int |long|str

for a set of n-tuples with n>1 - 1ist of 1ist(s) that contain
int|long|str tuples
Return: -

CmplSet.setValues (startNumber,endNumber)

Description: Defines the values of an algorithmic set

(startNumber, startNumber+l, ., endNumber)

Parameter: int startNumber start value of the set

int endNumber end value of the set
Return: -
CmplSet.setValues (startNumber, step,endNumber)

Description: Defines the values of an algorithmic set

(startNumber, startNumber+step, ., endNumber)

CMPL v.1.12 - Manual 121

Parameter: 1int startNumber
int step
Int endNumber
Return: -

R/o attributes:

CmplSet.values

Description:

Return: list

CmplSet.name

Description: Name of the set

Return: str

CmplSet.rank

Rank of the set

int

Description:
Return:

CmplSet.len

start value of the set

positive value for increment
negative value for decrement

end value of the set

List of the indexing entries of the set

of single indexing entries - for a set of n-tuples with n=1
of tuple(s) - for a set of n-tuples with n>1

name of the CMPL set (not the name of the Cmp1set object)

number of n of a n-tuple set

Description: Length of the set

Return: int number of indexing entries
Examples:
s = CmplSet ("s")

s.setValues (0, 4)
print s.rank
print s.len
print s.name

print s.values

s is assigned s€(0,1,...

—_— s

s = CmplSet ("a")
s.setValues (10,-2,0)

print s.rank
print s.len
print s.name
print s.values

s = CmplSet ("FOOD")

CMPL v.1.12 - Manual

122

s.setValues (["BEEF", "CHK", "FISH"]) sisassigned s€('BEEF',"CHK',' FISH')

print s.rank 1

print s.len 3

print s.name FOOD

print s.values ['BEEF', 'CHK', 'FISH']

s = CmplSet ("c",3)

s.setvalues ([[1,1,1], [1,1,2], \ s is assigned a 3-tuple set of integers
[1,2,11 1)

print s.rank 3

print s.len 3

print s.name c

print s.values [(1, 1, 1), (1, 1, 2), (1, 2, 1)1

4.3.2 CmplParameters

The class CmplParameters is intended to define parameters that can be used with several cmp1 objects.

Methods:

CmplParameter (paramName [,setl,set2,...])

Description: Constructor

Parameter: str paramName name of the parameter
Has to be equal to the corresponding name in the CMPL
model.
CmplSet optional - set or sets through which the parameter array is
setl,setz,... defined (default None)
Return: CmplParameter object

CmplParameter.setValues (val)

Description: Defines the values of a scalar parameter

Parameter: int|long|float!| value of the scalar parameter
str val

Return: -

CmplParameter.setValues (valList)

Description: Defines the values of a parameter array
Parameter: list valList list of int|long|float|str|list - value list of the
parameter array

Return: -

CMPL v.1.12 - Manual 123

R/o attributes:

CmplParameter.values

Description: List of the values of a parameter

Return: list of int|long|float|str]|list - value list of the parameter array

CmplParameter.value

Description: Value of a scalar parameter

Return: int|long|float|str - value of the scalar parameter

CmplParameter.setList

Description: List of sets through which the parameter array is defined
Return: list of CmplSet objects through which the parameter array is defined

CmplParameter.name

Description: Name of the parameter

Return: str - name of the CMPL parameter (not the name of the CmplParameter object)
CmplParameter.rank

Description: Rank of the parameter

Return: int - rank of the CMPL parameter
CmplParameter.len

Description: Length of the parameter array

Return: long number of elements in the parameter array

Examples:

p = CmplParameter ("p")
p.setValues (2) p is assigned 2

print p.values 21

print p.value
print p.name

.rank

[
2
P
print 0
1

print p.len

s = CmplSet ("s")
s.setValues (0, 4)
p = CmplParameter ("p", s)

p.setvValues([1,2,3,4,5]) pis assigned (1,2,...,5)
print p.values (1, 2, 3, 4, 5]
print p.name p

CMPL v.1.12 - Manual 124

print p.rank

print p.len 5

products = CmplSet ("products")
products.setValues (1, 3)

machines = CmplSet ("machines")

machines.setValues (1, 2)

a=CmplParameter ("a",machines, products)

a.setvalues([[8,15,12],[15,10,8]]) a is assigned a 2x3 matrix of integers
print a.values [(8, 15, 121, [15, 10, 8]]
print a.name a
print a.rank 2
print a.len 6
for e in a.setlist: [1, 2]

print e.values [1, , 31

0

= CmplSet ("s",2)
s.setValues ([[1,1],1[2,2]]) s is assigned the indices of a matrix diagonal

= CmplParameter ("p", s)
.setValues ([1,1])

T 'O

s is assigned a 2x2 identity matrix

print p.values [1, 1]

print p.name

print p.len

P
print p.rank 2
2

4.3.3 Cmpl

With the cmp1 class it is possible to define a CMPL model, to commit sets and parameters to this model, to
start and control the solving process and to read the CMPL and solver messages and to have access to the
solution(s) via CmplMessages and CmplSolutions objects.

4.3.3.1 Establishing models

Methods:

Cmpl (name)

Description: Constructor
Parameter: str name filename of the CMPL model
Return: Cmpl object

CMPL v.1.12 - Manual 125

Cmpl.setSets(setl[,set2,...])

Description:

Parameter: CmplSet
setl[,set2,...]

Return: -

Cmpl.setParameters (parl/[,par2,...])

Description:
Parameter: CmplParameter
parl[,par2,...]
Return: -
Examples:

Committing Cmp1set objects to the cmp1 model

CmplSet object(s)

Committing CmplParameter objects to the Cmpl model

CmplParameter object(s)

m = Cmpl ("prodmix.cmpl")

products = CmplSet ("products")
products.setValues (1, 3)

machines = CmplSet ("machines")

machines.setValues (1,2)

c = CmplParameter ("c",products)
c.setValues ([75,80,50])
b = CmplParameter ("b",machines)

b.setValues ([1000,1000])

a = CmplParameter ("a",machines,

a.setValues([[8,15,12]1,[15,10,811])

m.setSets (products,machines)

m.setParameters (c,a,b)

products)

Commits the sets products, machines to
the Cmpl object m

Commits the parameter c,a,b to the Cmpl ob-
ject m

CMPL v.1.12 - Manual

126

4.3.3.2 Manipulating models

Methods:

Cmpl.setOption (option)
Description: Sets a CMPL, display or solver option
Parameter: str option option in CmplHeader syntax

Return: int option id

Cmpl.delOption (optId)
Description: Deletes an option

Parameter: int optId option id

Return: -

Cmpl.delOptions ()

Description: Deletes all options
Parameter: -

Return: -

Cmpl.setOutput(ok/[,leadString]])
Description: Turns the output of CMPL and the invoked solver on or off
Parameter: bool ok True|False

str leadString optional - Leading string for the output (default - model
name)

Return: -

Cmpl.setRefreshTime (rTime)

Description: Refresh time for getting the output of CMPL and the invoked solver from a CM-
PLServer if the model is solved synchronously.

Parameter: float rTime refresh time in seconds (default 0.5)
Return: -

R/o attributes:

Cmpl.refreshTime

Description: Returns the refresh time for getting the output of CMPL and the invoked solver from
a CMPLServer if the model is solved synchronously.

Return: float Refresh time

CMPL v.1.12 - Manual 127

Examples:

m = Cmpl ("assignment.cmpl")
cl=m.setOption ("%$display nonZeros")
m.setOption ("%arg -solver cplex")

m.setOption ("%display solutionPool")

m.delOption(cl)
m.delOptions ()

Setting some options

Deletes the first option
Deletes all options

m = Cmpl ("assignment.cmpl")

m.setOutput (True)

m.setOutput (True, "my special model")

The stdOut and stdErr of CMPL and the invoked
solver are shown for the cmp1l object m.

As above but the output starts with the leading
string "my special model>".

= Cmpl ("assignment.cmpl")

.connect ("http://194.95.45.70:8008")
.setOutput (True)

.setRefreshTime (1)

3 8 B8 B

The stdOut and stdErr of CMPL and the invoked
solver located at the specified CMPLServer will be
refreshed every second.

4.3.3.3 Solving models

Methods:

Cmpl.solve ()

Description:

with a CMPLServer remotely.

Parameter: -

Return: -

Solves a cmpl model either with a local installed CMPL or if the model is connected

status of the model and the solver can be obtained by the at-

tributes cmplStatus, cmplStatusText, solverStatus

and solverStatusText

Cmpl.start()

Description:

Solves a Cmp1 model in a separate thread either with a local installed CMPL or if the

model is connected with a CMPLServer remotely.

Parameter: -

Return: -

status of the model and the solver can be obtained by the at-

tributes cmplStatus, cmplStatusText, solverStatus

and solverStatusText

CMPL v.1.12 - Manual

128

Cmpl.join()

Description:
Parameter:
Return:

Cmpl.isAlive ()

Description:
Parameter:

Return:

Waits until the solving thread terminates.

status of the model and the solver can be obtained by the at-
tributes cmplsStatus, cmplStatusText, solverStatus
and solverStatusText

Return whether the thread is alive

bool True Or False - return whether the thread is alive or not

Cmpl.connect (cmplUrl)

Description:

Parameter:

Return:

Connects a CMPLServer or CMPLGridScheduler under cmpiUrl - first step of solv-
ing a model on a CMPLServer remotely

str cmplUrl URL of the CMPLServer or CMPLGridScheduler

Cmpl.disconnect ()

Description:
Parameter:

Return:

Cmpl.send()

Description:

Parameter:
Return:

Cmpl.knock ()

Description:

Parameter:
Return:

CMPL v.1.12 - Manual

Disconnects the connected CMPLServer or CMPLGridScheduler

Sends the cmp1 model instance to the connected CMPLServer - first step of solving a
model on a CMPLServer asynchronously (after connect())

- status of the model can be obtained by the attributes
cmplStatus and cmplStatusText

Knocks on the door of the connected CMPLServer or CMPLGridScheduler and asks
whether the model is finished - second step of solving a model on a CMPLServer
asynchronously

- status of the model can be obtained by the attributes
cmplStatus and cmplStatusText

129

Cmpl.retrieve ()

Description: Retrieves the Cmp1 solution(s) if possible from the connected CMPLServer - last step
of solving a model on a CMPLServer asynchronously
Parameter: -

Return: - status of the model and the solver can be obtained by the at-
tributes cmplStatus, cmplStatusText, solverStatus
and solverStatusText

Cmpl.cancel ()

Description: Cancels the cmp1 solving process on the connected CMPLServer
Parameter: -

Return: - status of the model can be obtained by the attributes
cmplStatus and cmplStatusText

R/o attributes:

Cmpl.cmplStatus

Description: Returns the CMPL related status of the cmp1 object

Return: int CMPL_UNKNOWN = 0
CMPL OK = 1
CMPL_WARNINGS = 2
CMPL FAILED = 3
CMPLSERVER OK = 6

CMPLSERVER ERROR = 7
CMPLSERVER BUSY = 8
CMPLSERVER CLEANED

CMPLSERVER WARNING = 10
PROBLEM RUNNING = 11
PROBLEM FINISHED = 12
PROBLEM CANCELED = 13

PROBLEM NOTRUNNING = 14

CMPLGRID SCHEDULER UNKNOWN = 15

CMPLGRID SCHEDULER OK = 16

CMPLGRID SCHEDULER ERROR = 17

CMPLGRID SCHEDULER BUSY = 18

CMPLGRID SCHEDULER SOLVER NOT AVAILABLE = 19
CMPLGRID SCHEDULER WARNING = 20

CMPLGRID SCHEDULER_ PROBLEM DELETED = 21

CMPL v.1.12 - Manual 130

Cmpl

Cmpl.

Cmpl.

Cmpl.

Cmpl.

.cmplStatusText

Description: Returns the CMPL related status text of the cmp1 object

Return: str CMPL,_UNKNOWN
CMPL_OK
CMPL_WARNINGS
CMPL_FAILED
CMPLSERVER_OK
CMPLSERVER_ERROR
CMPLSERVER_BUSY
CMPLSERVER CLEANED
CMPLSERVER_WARNING
PROBLEM RUNNING
PROBLEM FINISHED
PROBLEM CANCELED
PROBLEM NOTRUNNING
CMPLGRID SCHEDULER UNKNOWN
CMPLGRID SCHEDULER OK
CMPLGRID SCHEDULER ERROR
CMPLGRID SCHEDULER BUSY
CMPLGRID SCHEDULER SOLVER NOT AVAILABLE
CMPLGRID_ SCHEDULER WARNING
CMPLGRID SCHEDULER PROBLEM DELETED

solverStatus

Description: Returns the solver related status of the cmp1 object
Return: int SOLVER OK = 4

SOLVER_FAILED =5
solverStatusText

Description: Returns the solver related status text of the cmp1 object
Return: str SOLVER_ OK

SOLVER_FAILED
jobId

Description: Returns the jobld of the cmp1 problem at the connected CMPLServer
Return: str string of the jobld

output

Description: Returns the output of CMPL and the invoked solver.
Intended to use if an application needs to parse the output.

Return: str string of output of CMPL and the invoked solver

CMPL v.1.12 - Manual 131

Examples:

m = Cmpl ("assignment.cmpl")

m.solve ()

Solves the cmpl object m locally

m = Cmpl ("assignment.cmpl")
.connect ("http://194.95.45.70:8008")

.solve ()

3

3

Solves the Ccmpl object m remotely and syn-
chronously on the specified CMPLServer

= Cmpl ("assignment.cmpl")

.connect ("http://194.95.45.70:8008")
.send ()

.knock ()

2 38 3 3 3

.retrieve ()

Solves the Ccmpl object m remotely and asyn-
chronously on the specified CMPLServer

models= []

models.append (Cmpl ("ml.cmpl"))
models.append (Cmpl ("m2.cmpl"))
models.append (Cmpl ("m3.cmpl"))

for m in models:

m.start ()

for m in models:

m.join ()

Starts all models in separate threads.

Waits until the all solving threads are terminated.

m = Cmpl ("assignment.cmpl")
m.solve ()
if m.solverstatus!=SOLVER OK:

m.solutionReport ()

Displays the optimal solution if the solver didn't
fail.

4.3.3.4 Reading solutions

Methods:

Cmpl.solutionReport ()

Description: Writes a standard solution report to stdOut

Parameter: -
Return: -

Cmpl.saveSolution(/[solFileName])

Description: Saves the solution(s) as CmplSolutions file

Parameter: str solFileName optional file name (default <modelname>.csol)

Return: -

CMPL v.1.12 - Manual

Cmpl.

Cmpl

Cmpl.

Cmpl.

Cmpl.

saveSolutionAscii(/solFileName])
Description: Saves the solution(s) as ASCII file
Parameter: str solFileName optional file name (default <modelname>.sol)

Return: -

.saveSolutionCsv([solFileName])

Description: Saves the solution(s) as CSV file

Parameter: str solFileName optional file name (default <modelname>.csv)

Return: -

varByName ([solIdx])

Description: Enables a direct access to variables by their name
Parameter: int solIdx optional solution index (default 0)

Return: -

conByName ([solIdx])

Description: Enables a direct access to constraints by their name
Parameter: int solIdx optional solution index (default 0)

Return: -

getVarByName (name, [solIdx])

Description: Returns a CmplSolElement object or a list of CmplSolElement objects for the

variable or variable array with the specified name

Parameter: str name name of the variable or variable array
int solldx optional solution index (default 0)
Return: CmplSolElement | for a single variable
list of for a variable array
CmplSolElement

Cmpl.getConByName ([solIdx])

Description: Returns a CmplSolElement object or a list of CmplSolElement objects for the

constraint or constraint array with the specified name

Parameter: str name name of the constraint or constraint array
int solldx optional solution index (default 0)
Return: CmplSolElement | for a single constraint
list of for a constraint array
CmplSolElement

CMPL v.1.12 - Manual 133

R/o attributes:

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

nrOfVariables
Description: Returns the number of variables of the generated and solved CMPL model
Return: int number of variables

nrOfConstraints
Description: Returns the number of constraints of the generated and solved CMPL model
Return: int number of constraints

objectiveName
Description: Returns the name of the objective function of the generated and solved CMPL model
Return: str objective nhame

objectiveSense
Description: Returns the objective sense of the generated and solved CMPL model
Return: str objective sense

nrOfSolutions
Description: Returns the number of solutions of the generated and solved CMPL model
Return: int number of solutions

solver
Description: Returns the name of the invoked solver of the generated and solved CMPL model
Return: str invoked solver

solverMessage
Description: Returns the message of the invoked solver of the generated and solved CMPL model
Return: str message of the invoked solver

varDisplayOptions
Description: Returns a string with the display options for the variables of the generated and

solved CMPL model

Return: str display options for the variables

conDisplayOptions

Description: Returns a string with the display options for the constraints of the generated and
solved CMPL model

Return: str display options for the constraints

CMPL v.1.12 - Manual 134

Cmpl.solution

Description: Returns the first (optimal) CmplSolutions object

Return: CmplSolutions first (optimal) solution

Cmpl.solutionPool

Description: Returns a list of Cmp1Solutions objects
Return: list of CmplSolu- listof CmplSolution object for solutions found
tions objects

CmplSolutions.status

Description: Returns a string with the status of the current solution provided by the invoked solver
Return: str solution status

CmplSolutions.value

Description: Returns the value of the objective function of the current solution
Return: float objective function value

CmplSolutions.idx

Description: Returns the index of the current solution
Return: int index of the current solution

CmplSolutions.variables

Description: Returns a list of Cmpl1SolElement objects for the variables of the current solution

Return: list of CmplSol- list of variables
Line objects

CmplSolutions.constraints

Description: Returns a list of cmplSolElement objects for the constraints of the current solution
Return: list of list of constraints

CmplSolElement

objects

CmplSolElement.idx

Description: Index of the variable or constraint
Return: int index of the variable or constraint

CmplSolElement .name

Description: Name of the variable or constraint

Return: str name of the variable or constraint

CMPL v.1.12 - Manual 135

CmplSolElement. type

Description: Type of the variable or constraint

Return: str type of the variable or constraint
c|1|B for variables
L|E|G for constraints

CmplSolElement.activity

Description: Activity of the variable or constraint

Return: long| float activity of the variable or constraint
CmplSolElement.lowerBound

Description: Lower bound of the variable or constraint

Return: float lower bound of the variable or constraint
CmplSolElement .upperBound

Description: Upper bound of the variable or constraint

Return: float upper bound of the variable or constraint
CmplSolElement.marginal

Description: Marginal value (shadow prices or reduced costs) bound of the variable or constraint

Return: float marginal value of the variable or constraint

Examples:

m = Cmpl ("assignment.cmpl") Solves the example from subchapter 4.1 and
displays some information about the gener-
ated and solved model

m.solve ()

print m.solver CBC

print m.solverMessage

print m.nrOfVariables 11

print m.nrOfConstraints 7
(all)

print m.varDisplayOptions (all)

print m.conDisplayOptions costs

print m.objectiveName min

print m.objectiveSense 29.0

print m.solution.value optimal

print m.solution.status 1

print m.nrOfSolutions 0

print m.solution.idx

CMPL v.1.12 - Manual 136

for v in m.solution.variables:

print v.idx,v.name, v.type,

v.activity,v.lowerBound,

\

v.upperBound

for ¢ in m.solution.constraints:

print

c.idx, c.name, c.type, \

c.activity, c.lowerBound,

c.upperBound

Displays all information about variables and
constraints of the optimal solution

Variables:

0 x[1,1] B 0.0 0.0 1.0
1 x[1,2] B 0.0 0.0 1.0
2 x[1,3] B 0.0 0.0 1.0
3 x[1,4] B 1.0 0.0 1.0
4 x[2,1] B 0.0 0.0 1.0
5 x[2,3] B 1.0 0.0 1.0
6 x[2,4] B 0.0 0.0 1.0
7 x[3,1] B 1.0 0.0 1.0
8 x[3,2] B 0.0 0.0 1.0
9 x[3,3] B 0.0 0.0 1.0
10 x[3,4] B 0.0 0.0 1.0

Constraints:

0 sos m[1] E 1.0 1.0 1.0
1 sos m[2] E 1.0 1.0 1.0
2 sos m[3] E 1.0 1.0 1.0
3 sos 1[1] L 1.0 -inf 1.0
4 sos 1[2] L 0.0 -inf 1.0
5 sos 1[3] L 1.0 -inf 1.0
6 sos 1[4] L 1.0 -inf 1.0

m = Cmpl ("assignment.cmpl")

3 8 B8 B

.solve ()

for s in m.solutionPool:

print
print
print

print

.setOption ("%display nonZeros")
.setOption ("%arg -solver cplex")

.setOption ("%display solutionPool")

"Solution number: ",s.idx+1
"Objective value: ",s.value
"Objective status: ",s.status
"Variables:"

for v in s.variables:

print v.idx,v.name, v.type, \

v.activity,v.lowerBound, \

v.upperBound

print

"Constraints:"

for ¢ in s.constraints:

Solves the example from subchapter 4.1 and
displays all information about variables and
constraints of all solutions found

Solution number: 1
Objective value: 29.0

Objective status: integer optimal

solution

Variables:

3 x[1,4] B 1.0 0.0 1.0
5 x[2,3] B 1.0 1

7 x[3,1] B 1.0 1
Constraints:

0 sos m[1] E 1.0 1.0 1.0

CMPL v.1.12 - Manual

137

print c.idx,c.name,c.type, \
c.activity,c.lowerBound, \

c.upperBound

(@)

sos m[2] E 1.0 1.0 1.0
2 sos m[3] E 1.0 1.0 1.0
sos 1[1] L 1.0 -inf 1.0

(@)

sos 1[3] L 1.0 -inf 1.0
sos 1[4] L 1.0 -inf 1.0
Solution number: 2

Objective wvalue: 29.0
Objective status:integer feasible

solution

for s in m.solutionPool:

m.varByName (s.idx)

m.conByName (s.1idx)

print "Variables:"
for ¢ in combinations.values:
print m.x[c].name,m.x[c].type, \
m.x[c].activity,\
m.x[c].lowerBound, \

m.x[c] .upperBound

print "Constraints:"
for i in m.sos m:

print m.sos m[i].name,\

m.sos _m[i].type, \

m.sos m[i].activity,\
m.sos_m[i].lowerBound, \
m.sos m[i].upperBound

for j in m.sos 1:

print m.sos_1[j].name, \

m.sos_1[j].type,\

m.sos 1[j].activity,\
m.sos_1[j].lowerBound, \
m.sos 1[]j].upperBound

As above but with direct access to the vari-
able and constraint names

Enables the direct access to the variable and
constraint names of the current solution

Iterates the variables x[i, 7] over the value
list of the Cmp1set object combinations

Iterates over the internal list of the indexing
entries of the constraints with the name

sos m

Iterates over the internal list of the indexing
entries of the constraints with the name

sos 1

model.getVarByName ("x") ;

model.getConByName ("1line") ;

v is assigned a list of Cmp1Solution objects
for the variable array with the name x

c is assigned a list of CmplSolution objects
for the constraint array with the name 1ine

CMPL v.1.12 - Manual 138

for x in v:

for x in c:

print x.name,

x.lowerBound, x.upperBound ,x.marginal

print x.name ,

x.lowerBound, x.upperBound ,x.marginal

Iterates over the list of CmplSolution ob-

x.type ,x.activity, \ jects for the variable array with the name x

. Iterates over the list of CmplSolution ob-
x.type ,x.activit . . i
ype Y jects for the constrains array with the name

line

4.3.3.5 Reading CMPL messages

R/o attributes:

Cmpl.cmplMessages

Description:

Return:

CmplMsg. type

Description:

Return:

CmplMsg.file

Description:

Return:

CmplMsg.line

Description:

Return:

Returns a list of cmp1Msg objects that contain the CMPL messages

list of CmplMsg list of CMPL messages

objects

Returns the type of the messages

str message type warning|error

Returns the name of the CMPL file in that the error or warning occurs

str CMPL file name or CmplData file name

Returns the line in the CMPL file in that the error or warning occurs

str line number

CmplMsg.description

Description:

Return:

Examples:

Returns a description of the error or warning message

str description of the error or warning

model =

model.solve ()

Cmpl ("diet.cmpl")

if model.cmplStatus==CMPL_WARNINGS:
for m in model.cmplMessages:
print m.type, \
m.file, \

If some warnings for the CMPL model
diet.cmpl appear the messages will be shown.

CMPL v.1.12 - Manual

139

m.line, \

m.description

4.3.4 CmplExceptions

pyCMPL provides its own exception handling. If an error occurs either by using pyCmpl classes or in the
CMPL model a cmplException is raised by pyCmpl automatically. This exception can be handled through
using a try-except block.

try:
do something

except CmplException, e:

print e.msg

4.4 jCMPL reference manual

To use the jCMPL functionalities a Java programme has to import jCMPL by import jCMPL.*; and to link
your application against jCcmpl.jar and the following jar files, that you can find in the CMPL applicatiopn

folder in jCmpl/Libs: commons-lang3, ws—-commons-util, xmplrpc-client, xmlrpc-com-

mons.

4.4.1 CmplSets
The class cmp1lset is intended to define sets that can be used with several cmp1 objects.

Setter methods:

CmplSet (setName [, rank])

Description: Constructor
Parameter: String setName name of the set

Has to be equal to the corresponding name in the CMPL
model.

int rank optional - rank n for a n-tuple set (default 1)
Return: CmplSet object

CmplSet.setValues (setList)

Description: Defines the values of an enumeration set

Parameter: Object setList for a set of n-tuples with n=1 - List |Array of single index-
ing entries int | Integer|long|Long|String
for a set of n-tuples with n>1 — 2-dimensional List |Array
that contain int | Integer|long|Long|String tuples

Return: -

CMPL v.1.12 - Manual 140

CmplSet.setValues (startNumber,endNumber)

Description:

Parameter:

Return:

Defines the values of an algorithmic set

(startNumber,
int startNumber

int endNumber

startNumber+1, ...,

endNumber)
start value of the set
end value of the set

CmplSet.setValues (startNumber, step,endNumber)

Description:

Parameter:

Return:

Getter methods:

CmplSet.values ()

Description:

Return:

CmplSet.name ()

Description:
Return:

CmplSet.rank()

Description:
Return:

CmplSet.len/()

Defines the values of an algorithmic set

(startNumber,
int startNumber

int step

int endNumber

startNumber+step, ...,

endNumber)
start value of the set

positive value for increment
negative value for decrement

end value of the set

List of the indexing entries of the set

List |
Object

Array of

Name of the set

String

Rank of the set

int

one-dimensional List or Array of single int | Integer|
long|Long|String - for a set of n-tuples with n=1
two-dimensional List or Array of int | Integer|long]|
Long|String - for a set of n-tuples with n>1

name of the CMPL set (not the name of the Cmp1set object)

number of n of a n-tuple set

Description: Length of the set

Return: int number of indexing entries
Examples:
CmplSet s = new CmplSet ("s");

s.setValues (0,4);

s is assigned s€(0,1,...

CMPL v.1.12 - Manual

141

System.
System.
System.
System.

out.println
out.println
out.println

out.println

(
(
(
(

S
S
S
S

.rank ()
.len()

.name ()

.values (

) ;
);
) ;
))i

CmplSet s =

s.setValues (10,-2,0);

System.
System.
System.
System.

out.println
out.println
out.println

out.println

(
(
(
(

S
S
S
S

.rank ()
.len()

.name ()

.values (

new CmplSet ("a");

) ;
)
);
))i

— o

CmplSet s =

Sringl]

sVals

{ "BEEF", "CHK", "FISH" } ;

s.setValues (sVals);

new CmplSet ("FOOD") ;

) ;
) ;
) ;

System.out.println(s.rank()
System.out.println(s.len()
System.out.println(s.name ()
for s.values ())

(String e: (Stringl])

System.out.println(e);

sisassigned s€('BEEF',"CHK',' FISH')

FOOD

BEEF
CHK
FISH

CmplSet s = new CmplSet ("FOOD") ;
ArraylList nutrLst =
new ArrayList<String>();
nutrLst.add ("BEEF") ;
nutrLst.add ("CHK") ;
nutrLst.add ("FISH");
(

s.setValues (nutrlLst) ;

sisassigned s€('BEEF',"CHK ',' FISH')

1
3
F'OOD

[BEEF, CHK, FISH]

System.out.println(s.rank());
System.out.println(s.len());
System.out.println(s.name ());
System.out.println(s.values());
CmplSet s = new CmplSet("c",3);
int[][] sVals = { ({1,1,1}, {1,1,2},
{1,2,1} };

s.setValues (sVals);

s is assigned a 3-tuple set of integers

CMPL v.1.12 - Manual

142

System.out.println(s.rank());
System.out.println(s.len());

System.out.println(s.name()); c

for (int 1=0; i<s.len(); i++) {

for (int j=0; j<s.rank(); J++) 111
System.out.print(s.get(i,]J)); 112
System.out.print ("\n"); 121

4.4.2 CmplParameters
The class cmplParameters is intended to define parameters that can be used with several cmp1 objects.

Setter methods:

CmplParameter (paramName" [, setl,set2,...])

Description: Constructor

Parameter: String paramName name of the parameter
Has to be equal to the corresponding name in the CMPL

model.
CmplSet optional - set or sets through which the parameter array is
setl,set2,... defined (default None)
Return: CmplParameter object

CmplParameter.setValues (val)

Description: Defines the values of a scalar parameter

Parameter: int|Integer| value of the scalar parameter
long|Long|float|

Float |double]|
Double|String

val

Return: -

CmplParameter.setValues (vals)

Description: Defines the values of a parameter array

Parameter: Object vals one- our multidimensional List|Array of int|Integer]
long|Long| float|Float|double|Double|String

Return: -

CMPL v.1.12 - Manual 143

Getter methods:

CmplParameter.values ()

Description: List of the values of a parameter
Return: Object - one-our multidimensional List|Array of int|Integer|long]|

Long | float |Float|double|Double|String - value list of the parameter array

CmplParameter.value ()

Description: Value of a scalar parameter

Return: int|Integer|long|Long|float|Float|double|Double|String - value of
the scalar parameter
CmplParameter.setList ()

Description: List of sets through which the parameter array is defined
Return: list of Cmplset objects through which the parameter array is defined

CmplParameter.name ()

Description: Name of the parameter

Return: String - name of the CMPL parameter (not the name of the CmplParameter ob-
ject)

CmplParameter.rank ()

Description: Rank of the parameter
Return: int - rank of the CMPL parameter

CmplParameter.len/()

Description: Length of the parameter array

Return: long number of elements in the parameter array
Examples:
CmplParameter p = new CmplParameter ("p");
p.setValues(2); p is assigned 2
System.out.println(p.values()); 2
System.out.println(p.value()); 2
System.out.println(p.name()); p
System.out.println(p.rank()); 0
System.out.println(p.len()); 1

CmplSet s = new CmplSet("s");

s.setValues (0,4);

CMPL v.1.12 - Manual 144

CmplParameter p = new CmplParameter ("p",s);
int[] pVals = { 1,2,3,4,5 };
p.setValues (pVals) ;

for (int val : (int[])p.values())

System.out.println(val);

System.out.println(p.name());
System.out.println(p.rank());
System.out.println(p.len());

pis assigned (1,2,...,5)

g w N

= T

products.setValues (1, 3);

machines.setValues (1,2);

CmplParameter a = new
CmplParameter ("a",machines, products) ;
int([][] aVals = { {8,15,12}, {15,10,8} };

a.setValues (avVals) ;

for (int 1=0; i<machines.len(); i++) {
for (int j=0; j<products.len(); j++)
System.out.print(" " +
((int[]1[])a.values()) [1][J])
System.out.println();

System.out.println(a.name());
System.out.println(a.rank());

System.out.println(a.len());

for (CmplSet s : a.setlList())

System.out.println(s.values());

CmplSet products = new CmplSet ("products");

CmplSet machines = new CmplSet ("machines");

a is assigned a 2x3 matrix of integers

8 15 12
15 10 8

CmplSet s = new CmplSet ("s",2);
int[][] sVals = { {1,1}, {2,2} };

s.setValues (sVals);

CmplParameter p = new CmplParameter ("p",s);
int[] pvals = { 1 , 1} ;
p.setValues (pVals);

s is assigned the indices of a matrix
diagonal

s is assigned a 2x2 identity matrix

CMPL v.1.12 - Manual 145

for (int val : (int[])p.values())
System.out.println(val) ; 1
1
System.out.println(a.name()); o)
System.out.println(a.rank()); 2
System.out.println(a.len());
4.4.3 Cmpl

With the cmp1 class it is possible to define a CMPL model, to commit sets and parameters to this model, to
start and control the solving process and to read the CMPL and solver messages and to have access to the
solution(s) via CmplMessages and CmplSolutions objects.

4.4.3.1 Establishing models

Setter methods:

Cmpl (name)

Description: Constructor
Parameter: String name filename of the CMPL model
Return: Cmpl object

Cmpl.setSets(setl[,set2,...])

Description: Committing Cmp1Set objects to the Cmp1 model

Parameter: CmplSet CmplSet object(s)
setl[,set2,...]

Return: -

Cmpl.setParameters (parl/[,par2,...])

Description: Committing CmplParameter objects to the Cmpl model

Parameter: CmplParameter CmplParameter object(s)
parl[,par2,...]
Return: -
Examples:

Cmpl m = new Cmpl ("prodmix.cmpl") ;

CmplSet products =
new CmplSet ("products");
products.setValues (1, 3);

CMPL v.1.12 - Manual 146

mplSet machines = new CmplSet ("machines");

machines.setValues (1,2);

CmplParameter c =
new CmplParameter ("c",products);
int[] cVals = {75,80,50};

c.setValues (cVals) ;
CmplParameter b =
new CmplParameter ("b",machines);
int[] bVals = {1000,1000};
b.setValues (bvals) ;
CmplParameter a =
new CmplParameter ("a",machines,products);
int[][] avals = { {8,15,12}, {15,10,8} };

a.setValues (aVals) ;

m.setSets (products,machines) ;

m.setParameters(c,a,b);

Commits the sets products,machines
to the Cmpl object m

Commits the parameter ¢, a,b tothe
Cmpl object m

4.4.3.2 Manipulating models

Setter methods:

Cmpl.setOption (option)

Description: Sets a CMPL, display or solver option

Parameter: String option option in CmplHeader syntax

Return: int option id

Cmpl.delOption (optId)

Description: Deletes an option
Parameter: Int optId option id
Return: -

CMPL v.1.12 - Manual 147

Cmpl.delOptions ()

Description: Deletes all options
Parameter: -
Return: -

Cmpl.setOutput (ok /[, leadStr]])

Description: Turns the output of CMPL and the invoked solver on or off
Parameter: boolean ok true| false
String leadStr optional - Leading string for the output (default - model
name)
Return: -

Cmpl.setRefreshTime (rTime)

Description: Refresh time for getting the output of CMPL and the invoked solver from a CM-
PLServer if the model is solved synchronously.
long rTime

Parameter: refresh time in milliseconds (default 400)

Return: -

Getter methods:

Cmpl.refreshTime ()

Description: Returns the refresh time for getting the output of CMPL and the invoked solver from
a CMPLServer if the model is solved synchronously.

long

Return: Refresh time in milliseconds

Examples:

Cmpl m = new Cmpl ("assignment.cmpl");

long cl=m.setOption("sdisplay nonZeros"); |Setting some options

m.setOption ("%arg -solver cplex");

m.setOption ("%display solutionPool");

m.delOption(cl) ;
m.delOptions () ;

Deletes the first option
Deletes all options

Cmpl m = new Cmpl ("assignment.cmpl");

m.setOutput (True) ;

m.setOutput (True, "my special model");

The stdOut and stdErr of CMPL and the invoked
solver are shown for the cmpl object m.

As above but the output starts with the leading
string "my special model>".

CMPL v.1.12 - Manual

148

Cmpl m =

new Cmpl ("assignment.cmpl") ;
m.connect ("http://194.95.45.70:8008") ;
m.setOutput (True) ;
m.setRefreshTime (500) ;

The stdout and stdErr of CMPL and the in-
voked solver located at the specified CMPLServer
will be refreshed every 500 millisecond.

4.4.3.3 Solving models

Setter Methods:

Cmpl.solve ()

Description:

Parameter:

Return:

Cmpl.start()

Description:

Parameter:

Return:

Cmpl.join()

Description:

Parameter:

Return:

Cmpl.isAlive ()

Description:

Parameter:

Return:

Solves a Cmpl model either with a local installed CMPL or if the model is connected
with a CMPLServer remotely.

- status of the model and the solver can be obtained by the
methods cmplStatus, cmplStatusText, solverStatus
and solverStatusText

Solves a cmpl model in a separate thread either with a local installed CMPL or if the

model is connected with a CMPLServer remotely.

- status of the model and the solver can be obtained by the
methods cmplStatus, cmplStatusText, solverStatus
and solverStatusText

Waits until the solving thread terminates.

- status of the model and the solver can be obtained by the
methods cmplStatus, cmplStatusText, solverStatus

and solverStatusText

Return whether the thread is alive

boolean true or false - return whether the thread is alive or not

Cmpl.connect (cmplUrl)

Description:

CMPL v.1.12 - Manual

Connects a CMPLServer or CMPLGridScheduler under cmpiUuri - first step of solv-

ing a model on a CMPLServer remotely

149

Parameter:

Return:

String cmplUrl URL of the CMPLServer or CMPLGridScheduler

Cmpl.disconnect ()

Description:

Parameter:

Return:

Cmpl.send()

Description:

Parameter:
Return:

Cmpl.knock ()

Description:

Parameter:

Return:

Cmpl.retrieve ()

Description:

Parameter:

Return:

Cmpl.cancel ()

Description:

Parameter:
Return:

CMPL v.1.12 - Manual

Disconnects the connected CMPLServer or CMPLGridScheduler

Sends the cmp1 model instance to the connected CMPLServer - first step of solving a
model on a CMPLServer asynchronously (after connect())

- status of the model can be obtained by the methods cm-
plStatus and cmplStatusText

Knocks on the door of the connected CMPLServer or CMPLGridScheduler and asks
whether the model is finished - second step of solving a model on a CMPLServer
asynchronously

- status of the model can be obtained by the methods
cmplStatus and cmplStatusText

Retrieves the cmp1 solution(s) if possible from the connected CMPLServer - last step

of solving a model on a CMPLServer asynchronously

- status of the model and the solver can be obtained by the
methods cmplStatus, cmplStatusText, solverStatus
and solverStatusText

Cancels the cmp1 solving process on the connected CMPLServer

- status of the model can be obtained by the methods
cmplStatus and cmplStatusText

150

Getter methods:

Cmpl.cmplStatus ()

Description: Returns the CMPL related status of the cmp1 object

Return: int CMPL UNKNOWN = 0
CMPL OK = 1
CMPL WARNINGS = 2
CMPL FAILED = 3
CMPLSERVER OK = 6

CMPLSERVER ERROR = 7
CMPLSERVER BUSY = 8
CMPLSERVER CLEANED
CMPLSERVER WARNING
PROBLEM RUNNING = 11

PROBLEM FINISHED 12

PROBLEM CANCELED 13

PROBLEM NOTRUNNING = 14

CMPLGRID SCHEDULER UNKNOWN = 15

CMPLGRID SCHEDULER OK = 16

CMPLGRID SCHEDULER ERROR = 17

CMPLGRID SCHEDULER BUSY = 18

CMPLGRID SCHEDULER SOLVER NOT AVAILABLE = 19
CMPLGRID SCHEDULER WARNING = 20

CMPLGRID SCHEDULER PROBLEM DELETED = 21

I
=
o

Cmpl.cmplStatusText ()

Description: Returns the CMPL related status text of the cmp1 object

Return: String CMPL_UNKNOWN
CMPL OK
CMPL WARNINGS
CMPL FAILED
CMPLSERVER OK
CMPLSERVER ERROR
CMPLSERVER BUSY
CMPLSERVER CLEANED
CMPLSERVER WARNING
PROBLEM RUNNING
PROBLEM FINISHED
PROBLEM CANCELED
PROBLEM NOTRUNNING
CMPLGRID SCHEDULER UNKNOWN
CMPLGRID_ SCHEDULER OK
CMPLGRID SCHEDULER ERROR
CMPLGRID_ SCHEDULER BUSY
CMPLGRID SCHEDULER SOLVER NOT AVAILABLE

CMPL v.1.12 - Manual 151

Cmpl.

CMPLGRID SCHEDULER WARNING
CMPLGRID_ SCHEDULER PROBLEM DELETED

solverStatus ()

Description: Returns the solver related status of the cmp1 object

Return: int SOLVER OK = 4

SOLVER FAILED = 5

Cmpl.solverStatusText ()

Description: Returns the solver related status text of the cmp1 object

Return: String SOLVER OK

SOLVER FAILED

Cmpl.jobId()

Description: Returns the jobld of the cmp1 problem at the connected CMPLServer

Return: String string of the jobId
Cmpl.output ()

Description: Returns the output of CMPL and the invoked solver.

Intended to use if an application needs to parse the output.

Return: String string of output of CMPL and the invoked solver
Examples:
Cmpl m = new Cmpl ("assignment.cmpl"); Solves the Cmpl object m locally
m.solve () ;
Cmpl m = new Cmpl ("assignment.cmpl"); Solves the Cmpl object m remotely and syn-

m.connect ("http://194.95.45.70:8008") ;

m.solve();

chronously on the specified CMPLServer

Cmpl m = new Cmpl ("assignment.cmpl");
m.connect ("http://194.95.45.70:8008") ;
m.send () ;

m.knock () ;

m.retrieve () ;

Solves the cmpl object m remotely and asyn-
chronously on the specified CMPLServer

ArraylList<Cmpl> models =
new ArrayList<Cmpl>();

models.add (new Cmpl ("ml.cmpl")):;
models.add (new Cmpl ("m2.cmpl"));
models.add (new Cmpl ("m3.cmpl"));
for

(Cmpl c models)

c.start();

Starts all models in separate threads.

CMPL v.1.12 - Manual 152

for (Cmpl ¢ : models) Waits until the all solving threads are terminated.

c.join();

Cmpl m = new Cmpl ("assignment.cmpl");

m.solve();
if (m.solverStatus() == Cmpl.SOLVER OK) Displays the optimal solution if the solver didn't
m.solutionReport () ; fail.

4.4.3.4 Reading solutions

Setter methods:

Cmpl.solutionReport ()

Description: Writes a standard solution report to stdOut
Parameter: -
Return: -

Cmpl.saveSolution(/[solFileName])

Description: Saves the solution(s) as CmplSolutions file

Parameter: String solFile- optional file name (default <modelname>.csol)
Name

Return: -

Cmpl.saveSolutionAscii(/solFileName])

Description: Saves the solution(s) as ASCII file

Parameter: String solFile- optional file name (default <modelname>.sol)
Name

Return: -

Cmpl.saveSolutionCsv(/[solFileName])

Description: Saves the solution(s) as CSV file

Parameter: String solFile- optional file name (default <modelname>.csv)
Name

Return: -
Getter methods:

Cmpl.nrOfVariables ()

Description: Returns the number of variables of the generated and solved CMPL model
Return: long number of variables

CMPL v.1.12 - Manual 153

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

Cmpl.

nrOfConstraints ()

Description: Returns the number of constraints of the generated and solved CMPL model
Return: long number of constraints

objectiveName ()

Description: Returns the name of the objective function of the generated and solved CMPL model

Return: String objective name

objectiveSense ()

Description: Returns the objective sense of the generated and solved CMPL model
Return: String objective sense

nrOfSolutions ()

Description: Returns the number of solutions of the generated and solved CMPL model
Return: int number of solutions

solver ()

Description: Returns the name of the invoked solver of the generated and solved CMPL model
Return: String invoked solver

solverMessage ()

Description: Returns the message of the invoked solver of the generated and solved CMPL model
Return: String message of the invoked solver

varDisplayOptions ()

Description: Returns a string with the display options for the variables of the generated and
solved CMPL model

Return: String display options for the variables

conDisplayOptions ()

Description: Returns a string with the display options for the constraints of the generated and
solved CMPL model

Return: String display options for the constraints

solution()

Description: Returns the first (optimal) Cmp1Solutions object

Return: CmplSolutions first (optimal) solution

CMPL v.1.12 - Manual 154

Cmpl.solutionPool ()

Description: Returns a list of Cmp1Solutions objects
Return: List of CmplSolu- list of CmplSolution object for solutions found
tions objects

CmplSolutions.status ()

Description: Returns a string with the status of the current solution provided by the invoked solver
Return: String solution status

CmplSolutions.value ()

Description: Returns the value of the objective function of the current solution
Return: double objective function value

CmplSolutions.idx()

Description: Returns the index of the current solution
Return: int index of the current solution

CmplSolutions.variables ()

Description: Returns a list of CmplSolElement objects for the variables of the current solution

Return: ArrayList<Cm- list of variables
plSolElement>
CmplSolutions.constraints ()

Description: Returns a list of cmplSolElement objects for the constraints of the current solution

Return: ArrayList<Cm- list of constraints
plSolElement>
Cmpl.getVarByName (name, [solIdx])

Description: Returns a CmplSolElement object or CmplSolArray of CmplSolElement ob-
jects for the variable or variable array with the specified name

Parameter: String name name of the variable or variable array
int solldx optional solution index (default 0)
Return: Object CmplSolElement for a single variable

CmplSolArray for a variable array

Cmpl.getConByName ([solIdx])

Description: Returns a CmplSolElement object or CmplSolArray of CmplSolElement ob-
jects for the constraint or constraint array with the specified name

Parameter: String name name of the constraint or constraint array
int solldx optional solution index (default 0)

CMPL v.1.12 - Manual 155

Return: Object CmplSolElement for a single constraint
CmplSolArray for a constraint array

CmplSolElement.idx ()
Description: Index of the variable or constraint
Return: int index of the variable or constraint

CmplSolElement .name ()

Description: Name of the variable or constraint

Return: String name of the variable or constraint

CmplSolElement. type ()

Description: Type of the variable or constraint

Return: String type of the variable or constraint
Cc|1|B for variables
L|E|G for constraints

CmplSolElement.activity ()

Description: Activity of the variable or constraint
Return: Object Double| Long Activity of the variable or constraint

CmplSolElement.lowerBound ()

Description: Lower bound of the variable or constraint

Return: double lower bound of the variable or constraint
CmplSolElement .upperBound ()

Description: Upper bound of the variable or constraint

Return: double upper bound of the variable or constraint
CmplSolElement.marginal ()

Description: Marginal value (shadow prices or reduced costs) bound of the variable or constraint
Return: double marginal value of the variable or constraint

Examples:

Cmpl m = new Cmpl ("assignment.cmpl"); Solves the example from subchapter
4.1 and displays some information
about the generated and solved

m.solve () ; model

System.out.printf ("$s\n",m.solver()); CBC

System.out.printf ("$s\n",m.solverMessage ()) ;

CMPL v.1.12 - Manual 156

m.getVarByName ("x") ;

for (int[] tuple: (int[][]) combinations.values())
{ System.out.printf ("%5s %$2d %n"

x.get (tuple) .name (),

x.get (tuple) .activity ())

}

System.out.printf ("$d\n",m.nrOfVariables()); 11
System.out.printf ("$d\n",m.nrOfConstraints()) ; 7
System.out.printf ("$s\n",m.varDisplayOptions()); (all)
System.out.printf ("$s\n",m.conDisplayOptions()); (all)
System.out.printf ("$s\n",m.objectiveName ()) ; costs
System.out.printf ("$s\n",m.objectiveSense()) ; min
System.out.printf ("$f\n",m.solution () .value()); 29.000000
System.out.printf ("$s\n",m.solution () .status()); optimal
System.out.printf ("$d\n",m.nrOfSolutions()); 1
System.out.printf ("$d\n",m.solution () .idx()); 0
Displays all information about vari-
ables and constraints of the optimal
solution
for (CmplSolElement v m.solution () .variables ()) |Variables:
{ x[1,11] B 0 0 1
System.out.printf ("%8s %2s %2d %2.0f %2.0f%n x[1,2] B 0 0 1
v.name (), v.type(),v.activity(), x{1,3] B 0 0 1
v.lowerBound (), v.upperBound()) ; x[1l,4] B 1 0 1
) x[2,1] B 0 0 1
x[2,3] B 1 0 1
x[2,4] B 0 0 1
x[3,1] B 1 0 1
x[3,2] B 0 0 1
x[3,3] B 0 0 1
x[3,4] B 0 0 1
for (CmplSolElement c:m.solution().constraints()) |Constraints:
{ sos m[1l] E 1 1 1
System.out.printf ("%$8s %2s %2.0f %$2.0f %2.0f sos_m[2] E 1 1 1
%n", c.name (), c.type(),c.activity(), sos m[3] E 1 1 1
c.lowerBound (), c.upperBound()) ; sos 1[1] L 1 -Infinity 1
} sos 1[2] L O -Infinity 1
sos 1[3] L 1 -Infinity 1
sos 1[4] L 1 -Infinity 1
CmplSolArray x = (CmplSolArray) Direct access to the variable vector

] by its name

Cmpl m = new Cmpl ("assignment.cmpl");

m.setOption ("%$display nonZeros");

m.setOption ("%arg -solver cplex");

Solves the example from subchapter
4.1 and displays all information about
variables and constraints of all solu-

CMPL v.1.12 - Manual 157

m.setOption ("%display solutionPool");
m.solve () ;
for (CmplSolution s m.solutionPool ()) {

System.out.printf ("Solution number: %d %n",
(s.idx () + 1))

System.out.printf ("Objective value: S$f %n",
s.value());

System.out.printf ("Objective status: %$s %n",

s.status());
System.out.println ("Variables:");
for (CmplSolElement v s.variables ()) {

System.out.printf ("%$8s %$2s %2d %2.0f $2.0f

gn", v.name (), v.type(), v.activity(),
v.lowerBound (), v.upperBound()):

}

System.out.println ("Constraints:");

for (CmplSolElement c s.constraints ()) {

System.out.printf ("%$8s %2s %$2.0f %$2.0f %2.0f

" c.type(),

$n", c.name(),
c.upperBound ()) ;

c.activity(),

c.lowerBound(),

tion found
Solution number: 1
Objective value: 29.000000
Objective status: integer
optimal solution
Variables:

x[1,4]1] B 1

x[2,3] B 1

x[3,11 B 1
Constraints:
sos m[1] E 1 1 1
sos m[2] E 1 1 1
sos m[3] E 1 1 1
sos 1[1] L 1 -Infinity 1
sos 1[3] L 1 -Infinity 1
sos 1[4] L 1 -Infinity 1
Solution number: 2
Objective value: 29.000000
Objective status: integer

feasible solution
Variables:
x[1,4] B 1 0 1

4.4.3.5 Reading CMPL messages

Getter methods:

Cmpl.cmplMessages ()

Description: Returns a list of cmp1Msg objects that contain the CMPL messages

Return: ArrayList< list of CMPL messages

CmplMsg>

CmplMsg. type ()

Description: Returns the type of the messages

Return: String

CMPL v.1.12 - Manual 158

message type warning|error

CmplMsg.file ()

Description: Returns the name of the CMPL file in that the error or warning occurs

Return: String CMPL file name or CmplData file name

CmplMsg.line ()

Description: Returns the line in the CMPL file in that the error or warning occurs
Return: String line number

CmplMsg.description ()

Description: Returns the a description of the error or warning message

Return: String description of the error or warning

Examples:

model = Cmpl ("diet.cmpl")

model.solve () ;

if (model.cmplStatus()==Cmpl.CMPL WARNINGS) {|If some warnings for the CMPL model

for (CmplMsg m: model.cmplMessages()) { |diet.cmpl appear the messages will be

System.out.printf("%$s %s %s %s %s", shown

m.type (), m.file(), m.line(),
m.description());

4.4.4 CmplExceptions

jCMPL provides its own exception handling. If an error occurs either by using jCmpl classes or in the CMPL

model a CmplException is raised by jCmpl automatically. This exception can be handled through using a
try-catch block.

try |
// do something
} catch (CmplException e) {

System.out.println(e);

CMPL v.1.12 - Manual 159

4.5 Examples

4.5.1 The diet problem

4.5.1.1 Problem description and CMPL model

In this subchapter the jCMPL and jCMPL formulation of the diet problem already discussed in subchapter
2.8.1.1 is dealt with.

The first step is to formulate the CMPL model diet.cmpl where the sets and parameters that are created
in the pyCmpl script have to be specified in the CMPL header entry $data:

%$data : NUTR set, FOOD set, costs[FOOD], vitamin[NUTR,FOOD], vitMin[NUTR]

variables:
x [FOOD] : integer[2..10];

objectives:

cost: costs[]T * x[]->min;

constraints:

$2%: vitamin[,] * x[] >= vitMin][];

4.5.1.2 pyCMPL

The corresponding pyCMPL script diet . py is formulated as follows:

#!/usr/bin/python

from pyCmpl import *

try:
model = Cmpl ("diet.cmpl")

nutr = CmplSet ("NUTR")
nutr.setValues (["A", "B1", "B2", "C"])

food = CmplSet ("FOOD"™)
food.setValues (["BEEF", "CHK", "FISH", "HAM" , "MCH", "MTL", "SPG", "TUR"])

costs = CmplParameter ("costs", food)
costs.setValues ([3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.99, 2.49)])

vitmin = CmplParameter ("vitMin",nutr)
vitmin.setValues ([700, 700, 700, 7001)

vitamin = CmplParameter ("vitamin",nutr, food)

CMPL v.1.12 - Manual 160

vitamin.setValues ([

[
[
[
[

model.setSets (nutr, food)

model.setParameters (costs,vitmin,vitamin)

model.solve ()

model.solutionReport ()

except CmplException,

print e.msg

60,8,8,40,15,70,25,607,
20,0,10,40,35,30,50,201
10,20,15,35,15,15,25,15]
15,20,10,10,15,15,15,10]

\
\

Executing this pyCMPL model by using the command:

pyCmpl diet.py

leads to the following output created by pyCMPL's standard solution report:

Problem diet.cmpl
Nr. of variables 8

Nr. of constraints 4
Objective name cost
Solver name CBC
Display variables (all)

Display constraints (all)

Objective status optimal
Objective value 101.14

Variables

Name Type

(min!)

Activity

LowerBound

UpperBound

Marginal

Constraints

Name Type

line[A]
line[B1]
line[B2]
line[C]

4.5.1.3 jCmpl

The corresponding jCMPL programme diet.java is formulated as follows:

CMPL v.1.12 - Manual

161

import jCMPL.*;

public class Diet {

public static void main(String[] args) throws CmplException ({

try {
Cmpl model = new Cmpl ("diet.cmpl");

CmplSet nutr = new CmplSet ("NUTR");
String[] nutrLst = {"A", "Bl", "B2", "C"};

nutr.setValues (nutrLst) ;

CmplSet food = new CmplSet ("FOOD") ;

String[] foodLst = {"BEEF", "CHK", "FISH", "HAM", "MCH",

"MTL", "SPG", "TUR"} ,.
food.setValues (foodLst) ;

CmplParameter costs = new CmplParameter ("costs", food);
Double[] costVec = {3.19, 2.59, 2.29, 2.89, 1.89, 1.99, 1.

costs.setValues (costVec) ;

CmplParameter vitmin = new CmplParameter ("vitMin",
int [] vitminVec = { 700,700,700,700};

vitmin.setValues (vitminVec) ;

nutr) ;

CmplParameter vitamin = new CmplParameter ("vitamin", nutr,
int[][] vitMat = { {60, 8, 8, 40, 15, 70, 25, 60},

{20, 0, 10, 40, 35, 30, 50,
{10, 20, 15, 35, 15, 15, 25,
{15, 20, 10, 10, 15, 15, 15,

vitamin.setValues (vitMat) ;

model.setSets (nutr, food);

model.setParameters (costs, vitmin, vitamin);

model.solve () ;

model.solutionReport () ;

} catch (CmplException e) {

System.out.println(e);

20},
15},
10135

99, 2.49};

food) ;

CMPL v.1.12 - Manual 162

Executing this jCMPL programme leads to the following output created by jCMPL's standard solution report:

Problem diet.cmpl

Nr. of variables 8

Nr. of constraints 4

Objective name cost

Solver name CBC

Display variables (all)

Display vonstraints (all)

Objective status optimal

Objective value 101.14 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x [BEEF] I 2 2.00 10.00 -
x [CHK] I 8 2.00 10.00 -
x [FISH] I 2 2.00 10.00 -
x [HAM] I 2 2.00 10.00 -
x [MCH] I 10 2.00 10.00 -
x [MTL] I 10 2.00 10.00 -
x [SPG] I 10 2.00 10.00 -
x [TUR] I 2 2.00 10.00 -
Constraints

Name Type Activity LowerBound UpperBound Marginal
line[A] G 1500.00 700.00 Infinity -
line[B1] G 1330.00 700.00 Infinity -
line[B2] G 860.00 700.00 Infinity -
line[C] G 700.00 700.00 Infinity -

4.5.2 Transportation problem

4.5.2.1 Problem description and CMPL model

This subchapter discusses the pyCMPL formulation of the transportation problem from subchapter 2.8.1.6.

The CMPL model transportation.cmpl can be formulated as follows:

%data : plants set,centers set,routes set[2],c[routes], s[plants], d[centers]

variables:

x[routes]: real[0..];
objectives:

costs: sum{ [i,J] in routes : c[i,31*x[i,J] } ->min;
constraints:

supplies {i in plants : sum{j in routes *> [i,*] : x[1,J]} = s[i];}

demands {j in centers: sum{i in routes *> [*,J] : x[1i,3]} <= d[jl;}

CMPL v.1.12 - Manual 163

4.5.2.2 pyCMPL

The corresponding pyCMPL script transportation.py is formulated as follows:

#!/usr/bin/python

from pyCmpl import *

try:
model = Cmpl ("transportation.cmpl")
routes = CmplSet ("routes",2)

routes.setValues([[1,1],[1,2],[1,4]),[2,2],(2,3],(2,4],(3,11,[3,311])

plants = CmplSet ("plants")
plants.setValues (1, 3)

centers = CmplSet ("centers")

centers.setValues (1,4)

costs = CmplParameter ("c",routes)
costs.setValues ([3,2,6,5,2,3,2,4])

0]

= CmplParameter ("s",plants)
.setValues ([5000,6000,25001)

0

o,

= CmplParameter ("d",centers)
.setValues ([6000,4000,2000,25001)

o,

model.setSets (routes, plants, centers)

model.setParameters (costs, s, d)

model.setOutput (True)
model.setOption ("%$display nonZeros")

model.solve ()

if model.solverStatus == SOLVER OK:
model.solutionReport ()
else:
print "Solver failed " + model.solver + " " + model.solverMessage

except CmplException, e:

print e.msg

Executing this pyCMPL model by using the command:

pyCmpl transportation.py

CMPL v.1.12 - Manual 164

leads to the following output of CMPL and CBC (enabled with model.setOutput (True)) and the standard

solution report:

transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>

gsolu transportation 933604.gsol

transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>

transportation>

CMPL model generation - running

CMPL version: 1.9.0

Authors: Thomas Schleiff, Mike Steglich
Distributed under the GPLv3

create model instance

write model instance

CMPL model generation - finished

Solver - running

Welcome to the CBC MILP Solver

Version: 2.8.8
Build Date: Jan 3 2014
Revision Number: 2001

command line -
(default strategy 1)
At
At
At
At
At
At
At

line 2 NAME
line 3 ROWS

12 COLUMNS
29 RHS

34 RANGES
35 BOUNDS
44 ENDATA

transportation.cmpl has 7 rows,

transportation.cmpl

line
line
line
line
line
Problem
Coin0008I transportation.cmpl read with 0 errors
Presolve 6 (-1) (-1) (=2)
0 Obj 16499.7 Primal inf 9500.2001
5 0Obj 36500

Optimal - objective value 36500
After Postsolve, objective 36500,
Optimal objective 36500 - 5 iterations time 0.002,
Total time (CPU seconds) : 0.00 (Wallclock

columns and 14
(3)

rows, 7

infeasibilities

CMPL:
CMPL:

Time used for model generation: 0 seconds

Time used for solving the model: 0 seconds

Solution written to

Solver - finished

Dual inf 1.9999999

elements

(1)

- dual 0 (0),
Presolve 0.00

seconds) :

8 columns and 16 elements

primal 0

0.00

cmplSolution file: transportation 933604.csol

/Applications/Cmpl/bin/../Thirdparty/CBC/cbc transportation 933604.mps min solve

(0)

Problem
Nr.
Nr.
Objective name

Solver name

Display variables
Display constraints

of variables

transportation.
8

of constraints 7

costs
CBC
nonzeroVariables (all)

nonZeroConstraints (all)

Objective status

Objective value

Variables

Name

optimal

36500.00 (min!)

Activity LowerBound

UpperBound

Marginal

2500.00
2500.00

CMPL v.1.12 - Manual

165

x[2,2] [1500.00 0.00 inf 0.00
x[2,3] c 2000.00 0.00 inf 0.00
x[2,4] c 2500.00 0.00 inf 0.00
x[3,1] c 2500.00 0.00 inf 0.00
Constraints

Name Type Activity LowerBound UpperBound Marginal
supplies[1] E 5000.00 5000.00 5000.00 3.00
supplies([2] E 6000.00 6000.00 6000.00 6.00
supplies[3] E 2500.00 2500.00 2500.00 2.00
demands [1] L 5000.00 -inf 6000.00 0.00
demands [2] L 4000.00 -inf 4000.00 -1.00
demands [3] L 2000.00 -inf 2000.00 -4.00
demands [4] L 2500.00 -inf 2500.00 -3.00

4.5.2.3 jCMPL

The corresponding jCMPL script transportation.java is formulated as follows:

import jCMPL.*;

import java.util.ArraylList;

public class Transportation {

public static void main(String[] args) throws CmplException {

try {
Cmpl model = new Cmpl ("transportation.cmpl");

CmplSet routes = new CmplSet ("routes", 2);
int[][] arcs = { {1, 1}, {1, 2}, {1, 4}, {2, 2}, {2, 3},
{2, 4}, {3, 1}, {3, 3}1};

routes.setValues (arcs) ;

CmplSet plants = new CmplSet ("plants");
plants.setValues (1, 3);

CmplSet centers = new CmplSet ("centers");

centers.setValues (1, 1, 4);

CmplParameter costs = new CmplParameter ("c", routes);
Integer[] costArr = {3, 2, 6, 5, 2, 3, 2, 4};

costs.setValues (costArr) ;

CmplParameter s = new CmplParameter ("s", plants);
int[] sList = {5000,6000,2500};

s.setValues (sList);

CMPL v.1.12 - Manual 166

CmplParameter d new CmplParameter ("d", centers);

int[] dArr = {6000, 4000, 2000, 2500};
d.setValues (dArr) ;
model.setSets (routes, plants, centers);

model.setParameters (costs, s, d);
model.setOutput (true);
model.setOption ("%$display nonZeros");

model.solve () ;

if (model.solverStatus() == Cmpl.SOLVER OK) {
model.solutionReport () ;
} else {
System.out.println ("Solver failed " + model.solver () +
" " 4+ model.solverMessage());
}
} catch (CmplException e) {

System.out.println(e);

Executing this pyCMPL model by using the command:

pyCmpl transportation.py

leads to the following output of CMPL and CBC (enabled with model.setOutput (True)) and the standard
solution report:

transportation> CMPL model generation - running
transportation> CMPL version: 1.9.0

transportation> Authors: Thomas Schleiff, Mike Steglich
transportation> Distributed under the GPLv3
transportation> create model instance

transportation> write model instance

transportation> CMPL model generation - finished
transportation> Solver - running

transportation> Welcome to the CBC MILP Solver
transportation> Version: 2.8.8

transportation> Build Date: Jan 3 2014

transportation> Revision Number: 2001

transportation> command line - /Applications/Cmpl/bin/../Thirdparty/CBC/cbc transportation 228086.mps min solve

gsolu transportation 228086.gsol

transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>
transportation>

transportation>

(default strategy 1)
At
At
At
At
At
At
At

line 2 NAME
line 3 ROWS
12 COLUMNS
29 RHS
34 RANGES
35 BOUNDS
44 ENDATA

Problem transportation.cmpl has 7 rows,

transportation.cmpl

line
line
line
line
line
8 columns and 16 elements
Coin0008I transportation.cmpl read with 0 errors
(-1) (-1) columns and 14 (-2) elements

Presolve 6 rows, 7

CMPL v.1.12 - Manual

167

transportation> 0 Obj 16499.7 Primal inf 9500.2001 (3) Dual inf 1.9999999 (1)
transportation> 5 Obj 36500

transportation> Optimal - objective value 36500

transportation> After Postsolve, objective 36500, infeasibilities - dual 0 (0), primal 0 (0)
transportation> Optimal objective 36500 - 5 iterations time 0.002, Presolve 0.00
transportation> Total time (CPU seconds) : 0.00 (Wallclock seconds): 0.00
transportation> CMPL: Time used for model generation: 0 seconds

transportation> CMPL: Time used for solving the model: 0 seconds

transportation> Solution written to cmplSolution file: transportation 228086.csol

transportation> Solver - finished

Problem transportation.cmpl

Nr. of variables 8

Nr. of constraints 7

Objective name costs

Solver name CBC

Display variables nonZeroVariables (all)

Display vonstraints nonZeroConstraints (all)

Objective status optimal

Objective value 36500.00 (min!)

Variables

Name Type Activity LowerBound UpperBound Marginal
x[1,1] C 2500.00 0.00 Infinity 0.00
x[1,2] C 2500.00 0.00 Infinity 0.00
x[2,2] C 1500.00 0.00 Infinity 0.00
x[2,3] C 2000.00 0.00 Infinity 0.00
x[2,4] c 2500.00 0.00 Infinity 0.00
x[3,1] c 2500.00 0.00 Infinity 0.00
Constraints

Name Type Activity LowerBound UpperBound Marginal
supplies[1] E 5000.00 5000.00 5000.00 3.00
supplies[2] E 6000.00 6000.00 6000.00 6.00
supplies[3] E 2500.00 2500.00 2500.00 2.00
demands [1] L 5000.00 -Infinity 6000.00 0.00
demands [2] L 4000.00 -Infinity 4000.00 -1.00
demands [3] L 2000.00 -Infinity 2000.00 -4.00
demands [4] L 2500.00 -Infinity 2500.00 -3.00

4.5.3 The shortest path problem

4.5.3.1 Problem description and CMPL model

Consider an undirected network G =(V,4) where ¥V is a set of nodes and 4 is a set of arcs joining pairs of
nodes. The decision is to find the shortest path from a starting node s to a target node ¢ This problem can
be formulated as an LP as follows (Hillier and Liebermann 2010, p. 383f.):

CMPL v.1.12 - Manual 168

Z cyX;dmin!

(i,j)e4
S.t.
1 Jifi=s
z X~ Z x;=\=1 ,ifi=t ;VieV
(i.j)e4 (j.i)ed 0 , otherwise

x,; >0,V (i, j)€A

=

The decision variables are x;, V€4 with x;=1 if the arc i ; is used. The parameters
C ;Y €A define the distance between the nodes i and j, but can also are interpreted as the time a

vehicle takes to drive from node i to node ;.

This CMPL model can be formulated as follows whilst the sets 4 an 7 and the parameters ¢;, ¢ and s are
defined in a pyCMPL script or jCMPL programme.

$data : A set[2], c[A], V set , s, t

parameters:
{1 in V: { i=s : rHs[i]:=1; |
i=t : rHs[i]:=-1; |

default: rHs[i]:=0;} }

variables:
X [A] :reallO0..];

objectives:

sum{ [i,3] in A: c[i,jl1*x[1i,J] } -> min;

constraints:
node { i in V: sum{ J in (A *> [i,*]) : x[1i,7] } -

sum{ j in (A *> [*,i]) : x[3j,i] } = rHs[i];}

To describe the formulation of the shortest path problem in pyCMPL and jCMPL the simple example shown in
the following figure is used where the weights on the arcs are interpreted as the time in minutes a vehicle
needs to travel from a node i to a node ;.

It is assumed that the starting node is node 1 and the target node is node 7.

CMPL v.1.12 - Manual 169

4.5.3.2 pyCMPL

The corresponding pyCMPL script shortest-path.py is formulated as follows:

#!/usr/bin/python

from pyCmpl import *

try:
model = Cmpl ("shortest-path.cmpl")

routes = CmplSet ("A",2

)

routes.setValues ([[1,2],11,4],[2,1]1,12,3]1,102,41,12,51,\
[3,21,[3,5],04,11,1[4,2],1[4,51,[4,6],\
[5,21,[5,3]1,05,41,1[5,6],[5,7]1,\
[6,4]1,1[6,51,[6,71,[7,5],1[7,06]1 1)

nodes = CmplSet ("V")

nodes.setValues (1,7)

c = CmplParameter ("c", routes)

c.setvValues([(7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,111)

sNode = CmplParameter ("s")
sNode.setValues (1)

tNode = CmplParameter ("t")
tNode.setValues (7)

model.setSets (routes, nodes)

model.setParameters (c, sNode, tNode)

model.solve ()

print "Objective Value: ", model.solution.value

for v in model.solution.variables:
if v.activity>0:

print v.name , " " , v.activity

except CmplException, e:

print e.msg

Executing this pyCMPL script through using the command:

pyCmpl shortes-path.py

leads to the following output of the pyCMPL script:

CMPL v.1.12 - Manual 170

Objective Value: 22.0

x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0

The optimal route is 1-4—6—7 with a travelling time of 22 minutes.

4.5.3.3 jCMPL

The corresponding jCMPL programme shortest-path.java is formulated as follows:

package shortestpath;

import jCMPL.*;

public class ShortestPath {

public static void main(String[] args) throws CmplException ({

try {
Cmpl m = new Cmpl ("shortest-path.cmpl");

CmplSet routes = new CmplSet ("A", 2);

int[]I[] arcs = { {1, 2%}, {1, 4%}y, {2, 1}, {2, 3}, {2, 4}, {2, 5},
{3, 2}, {3, 5}, {4, 1}, {4, 2}, {4, 5}, {4, 6},
{5, 2}, {5, 3}, {5, 4}, {5, 6}, {5, 7},
{6, 4}, {6, 5}, {6, 7}, {7, 5}, {7, 6}};

routes.setValues (arcs) ;

CmplSet nodes = new CmplSet ("V");

nodes.setValues (1, 7);

CmplParameter ¢ = new CmplParameter ("c", routes);
Integer|[] cArxr = {7, 5, 7, 8, 9, 7, 8, 5, 5, 9, 15, 6, 7, 5, 15, 8,
6, 8, 11, 9, 11};

c.setValues (cArr) ;

CmplParameter sNode = new CmplParameter ("s");
sNode.setValues (1) ;

CmplParameter tNode = new CmplParameter ("t");
tNode.setValues (7) ;

m.setSets (routes, nodes);

m.setParameters (c, sNode, tNode);

CMPL v.1.12 - Manual 171

m.solve();

if (m.solverStatus() == Cmpl.SOLVER OK) {
System.out.println ("Objective value :" 4+ m.solution () .value());
for (CmplSolElement v : m.solution().variables()) {

if ((Double) wv.activity() > 0) {

System.out.println(v.name() + " " + v.activity());

}
} else {
System.out.println("Solver failed " + m.solver() + " "
+ m.solverMessage());
}
} catch (CmplException e) {

System.out.println(e);

}

Executing this jCMPL programme leads to the following output of the pyCMPL script:

Objective value :22.0
x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0

As in pyCMPL the optimal route is 1-4—6—7 with a travelling time of 22 minutes.

4.5.4 Solving randomized shortest path problems in parallel

4.5.4.1 Problem description

For the last example it was shown that the optimal route travelling from node 1 to node 7 is 1-4—6—7.
This solution is based on the assumption that the travelling times between nodes are certain. This example
describes how a randomized shortest path problem can be solved where subproblems describing random
situations are solved in own threads in parallel.

4.5.4.2 pyCMPL

Assuming that the staring node is node 1 and the target node is node 7 the corresponding pyCMPL script
shortest-path.py is formulated as follows:

#!/usr/bin/python

from future import division

1
2
3
4 from pyCmpl import *
5

import random

CMPL v.1.12 - Manual 172

O J o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

try:
routes = CmplSet ("A",2)
routes.setValues ([[1,21,1[1,41,12,1]1,12,31,1[2,41,12,51,\
(3,21,13,51,04,11,104,2],104,51,14,61,\
[5,21,15,31,1[5,41,[5,61,1[5,71,\
(6,41,16,51,106,71,[7,51,17,61 1)

nodes = CmplSet ("V")

nodes.setValues (1, 7)
c = CmplParameter ("c"
c.setValueS([7, 5, 7, 8, 9r 7r 8, 5! 5! 9! l5r 6171511518!9'6'8’11’9’11])

, routes)

sNode = CmplParameter ("s")

sNode.setValues (1)

tNode =
tNode.setValues (7)

CmplParameter ("t")

models= []

randC = []

for i in range(5):
models.append (Cmpl ("shortest-path.cmpl"))
models[i].setOption ("%display nonZeros")
models[i] .setSets (routes, nodes)

tmpC =[]

for m in c.values:
tmpC.append(m + random.randint (-40,40)/10)

randC.append (CmplParameter ("c", routes))

randC[i] .setValues (tmpC)

models[i].setParameters (randC[i], sNode, tNode)

for m in models:

m.start ()

for m in models:

m.Jjoin ()

i =0
for m in models:
m.solution.value

print "problem : " , i , " needed time " ,

for v in m.solution.variables:

CMPL v.1.12 - Manual

173

52 print v.name , " " , v.activity
53 i=1+1

54

56 except CmplException, e:

57 print e.msg

This script uses the same sets and parameters as before but for each of the 5 instantiated models in line 29
a new parameter array c is created whilst the original array ¢ is changed by random numbers in line 35. In
line 43 all of the models are starting and in line 46 the pyCmpl script is waiting for the termination of all of
the models.

Executing this pyCMPL script through using the command:

pyCmpl shortes-path.py

can lead to the following output of the pyCMPL script, but every new run will show different results because
of the random numbers.

problem : O needed time 23.7
x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0
problem : 1 needed time 20.2
x[1,2] 0
x[2,5] 1.0
x[5,71] 0
problem : 2 needed time 13.3
x[1,4] .0
x[4,6] 1.0
x[6,7] 0
problem : 3 needed time 17.6
x[1,2] 0
x[2,5] 0
x[5,7] 1.0
problem : 4 needed time 20.7
x[1,4] 1.0
x[4,6] 1.0
x[6,7] 1.0

Depending on the uncertain traffic situations two different routes between the nodes 1->7 can be op-
timal: 1-4—-6—7 and 1-2—-5—-7.

4.5.4.3 jCMPL

Assuming that the staring node is node 1 and the target node is node 7 the corresponding jCMPL pro-
gramme shortest-path.java is formulated as follows:

1 package shortestpath;
2 import jCMPL.*;

CMPL v.1.12 - Manual 174

O J o O bW

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

import
import

import

public

java.util.ArrayList;
java.util.logging.Level;
java.util.logging.Logger;

class shortestPathThreads {

public static void main(String[] args) throws CmplException {

try {

CmplSet routes = new CmplSet ("A",2);

int[][] arcs = { {1,2},(1,4}y,(2,1},{2,3},{2,4},1{2,5},
{3,2},{3,5},{4,1},{4,2},{4,5},{4,6},
{5,2},{5,3},{5,4},{5,6},{5,7},
{6,4},{6,5},{6,7},{7,5},{7,6}};

routes.setValues (arcs) ;

CmplSet nodes = new CmplSet ("V");

nodes.setValues (1,7);

Integer[] cArr = {7,5,7,8,9,7,8,5,5,9,15,6,7,5,15,8,9,6,8,11,9,11};

CmplParameter sNode = new CmplParameter ("s");
sNode.setValues (1) ;

CmplParameter tNode
tNode.setValues (7) ;

new CmplParameter ("t");

ArrayList<Cmpl> models = new ArrayList<Cmpl>();
ArraylList<CmplParameter> randC = new ArraylList<CmplParameter>();

for (int 1 = 0; 1 <= 5; i++) {

models.add (new Cmpl ("shortest-path.cmpl"));

models.get (i) .setSets (routes, nodes);

randC.add (new CmplParameter ("c", routes));

ArrayList<Double> tmpC = new ArrayList<Double>();
for (Integer cArrl : cArr) {
tmpC.add (Double.valueOf (cArrl) +
Double.valueOf (-40 + (Math.random () * 40))/10);
}
randC.get (1) .setValues (tmpC) ;
models.get (1) .setParameters (randC.get (i), sNode, tNode);

models.get (i) .setOption ("%display nonZeros");

CMPL v.1.12 - Manual 175

49

50 for (Cmpl c : models) {

51 c.start ();

52 }

53

54 for (Cmpl c : models) {

56 c.join();

57 }

58

59 int 1 = 0;

60 for (Cmpl c : models) {

61 System.out.println("model : " + String.valueOf (i) +

62 " needed time : " + c.solution() .value());

63

604 for (CmplSolElement v : c.solution().variables()) {

65 System.out.println(v.name () + " " + v.activity());

66 }

67 i++;

68 }

69

70 } catch (CmplException e) ({

71 System.out.println(e);

72 } catch (InterruptedException ex) {

73 Logger.getLogger (shortestPathThreads.class.getName ()) J
.log(Level.SEVERE, null, ex);

74 }

75 }

76 }

This script uses the same sets and parameters as before but for each of the 5 instantiated models in line 35
a new parameter array c is created whilst the original array c is changed by random numbers in line 42. In
line 51 all of the models are starting and in line 56 the jCmpl programme is waiting for the termination of all
of the models.

Executing this jCMPL programme can lead to the following output of the pyCMPL script, but every new run
will show different results because of the random numbers.

model : 0 needed time : 12.4438
x[1,2]
x[2,5]
x[5,7]
model : 1 needed time : 14.9163
x[1,2]
x[2,5]
x[5,7]
model : 2 needed time : 15.2786
x[1,4]
x[4,6]

CMPL v.1.12 - Manual 176

x[6,7] 1.0

model : 3 needed time : 15.253
x[1,4]

x[4,6]

x[6,7] 1.

model : 4 needed time : 13.8339
x[1,4]

x[4,6]

x[6,7]

Depending on the uncertain traffic situations two different routes between the nodes 1->7 can be op-
timal: 1-4—6—7 and 1-2—-5—7.

4.5.5 Column generation for a cutting stock problem

4.5.5.1 Problem description and CMPL model

The following pyCMPL script and the corresponding jCMPL programme including the example are based on
the AMPL formulation of a column generator for a cutting stock problem and is taken from (Fourer et.al.
2003, p. 304ff). In this cutting stock problem long raw rolls of paper have to be cut up into combinations of
smaller widths that have to meet given orders and the objective is to minimize the waste.

In the example, the raw width is 110" and the demands for particular widths are given in the following table:

orders (demand) withs
48 20"
35 45"
24 50"
10 55"
8 75"

Fourer, Gay & Kernigham use the Gilmore-Gomory procedure to define cutting patterns by involving two lin-
ear programmes.

The first model is a cutting optimisation model that finds the minimum number of raw rolls with a given set
of possible cutting patterns subject to fulfilling the orders for the particular widths. This problem can be for-
mulated as in the CMPL file cut .cmpl as follows:

%$data :rollWidth, widths set, patterns set, orders[widths],nbr[widths,patterns]

variables:

cut [patterns]: integer[0..];

objectives:

number: sum{ Jj in patterns: cut[]j] }->min;

CMPL v.1.12 - Manual 177

constraints:

£fill {i in widths: sum{ j in patterns : nbr[i,jl*cut[j] } >= orders[i]; }

The parameter rol1width defines the width of the raw rolls, the set widths defines the widths to be cut,
the set patterns the set of the patterns, the parameter orders the number of orders per width and the
parameters nbr[i, §] the number of rolls of width i in pattern 5. The variables are the cut [§] and they
define how many cuts of a pattern 5 are to be produced.

The second model is the pattern generation model that is indented to identify a new pattern that can be
used in the cutting optimisation.

%data : widths set, price[widths], rollWidth
variables:

use[widths]: integer[0..];

reducedCosts : real;

objectives:

sum{ i in widths: price[i] * use[i]} -> max;

constraints:

sum{ i in widths : i1 * use[i] } <= rollWidth;

This model in the CMPL file cut-pattern.cmpl requires as specified in the 3data entry the set widths,
the parameter ro11Width and a parameter vector price, that contains the marginals of the constraints
fill of a solved cut.cmpl problem with a relaxation of the integer variables cut [j1].

It is a knapsack problem that "fills" a knapsack (here a raw roll with a given width rollwidth) with the
most valuable things (here the desired widths via the variables use[i]) where the value of a width i is
specified by the price[i].

4.5.5.2 jCMPL

The relationship between these two CMPL models and the entire cutting optimisation procedure is controlled
by the following pyCMPL script cut.py

1 #!/usr/bin/python

2

3 from pyCmpl import *

4 import math

5

6 try:

7 cuttingOpt = Cmpl ("cut.cmpl")

8 patternGen = Cmpl ("cut-pattern.cmpl")

9

10 cuttingOpt.setOption ("%$arg -solver cplex")
11 patternGen.setOption ("%$arg -solver cplex")
12

CMPL v.1.12 - Manual 178

13 r = CmplParameter ("rollWidth")

14 r.setValues (110)

15

16 w = CmplSet ("widths")

17 w.setValues ([20, 45, 50, 55, 75])
18

19 o = CmplParameter ("orders",w)

20 o.setValues ([48, 35, 24, 10, 8 1)
21

22 nPat=w.len

23 p = CmplSet ("patterns")

24 p.setValues (1,nPat)

25

26 nbr = []

27 for i in range (nPat) :

28 nbr.append([0 for j in range(nPat)])
29

30 for i in w.values:

31 pos = w.values.index (1)

32 nbr[pos] [pos] = int (math.floor(r.value / i))
33

34 n = CmplParameter ("nbr", w, p)

35 n.setValues (nbr)

36

37 price = []

38 for i in range(w.len):

39 price.append(0)

40

41 pr = CmplParameter ("price", w)

42 pr.setValues (price)

43

44 cuttingOpt.setSets (w,p)

45 cuttingOpt.setParameters(r, o, n)
46

47 patternGen.setSets (w)

48 patternGen.setParameters (r, pr)

49

50 ri = cuttingOpt.setOption ("%arg -integerRelaxation")
51

52 while True:

53 cuttingOpt.solve ()

54 cuttingOpt.conByName ()

55

56 for i in w.values:

57 pos = w.values.index (1)

58 price[pos] = cuttingOpt.fill[i].marginal

CMPL v.1.12 - Manual 179

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

pr.setValues (price)

patternGen.solve ()

patternGen.varByName ()

if (l-patternGen.solution.value) < -0.00001:
nPat = nPat + 1
p.setValues (1,nPat)
for i in w.values:
pos = w.values.index (i)
nbr[pos] .append (patternGen.use[i] .activity)
n.setValues (nbr)
else:
break

cuttingOpt.delOption (ri)

cuttingOpt.solve ()
cuttingOpt.varByName ()

print "Objective value: " , cuttingOpt.solution.value , "\n"

print "Pattern:"

vStr=" ["

for j in p.values:
vStr+= " %d " % J

print vStr

for i in range(len(w.values)):
vStr="%2d | " % w.values[i]

for j in p.values:

vStr 4= " &d " % nbr[i][j-1]
print vStr
print "\n"

for j in p.values:
if cuttingOpt.cut[j].activity>0:
print "%2d pieces of pattern: %d" % (cuttingOpt.cut[j].activity,
for i in range(len(w.values)):

print " width ", w.values[i] , " - " , nbr(i][j-1]

102 except CmplException, e:

103

print e.msg

)

CMPL v.1.12 - Manual 180

Cplex is chosen as solver for both in the lines 7 and 8 instantiated models (lines 10,11). In the next lines 13-
20 the parameters rollWidth and orders and the set widths are created and the corresponding data
are assigned. The lines 26-35 are intended to create an initial set of patterns whilst the matrix nbr contains
only one pattern per width, where the diagonal elements are equal to the maximal possible number of rolls
of the particular width. After creating the vector price with null values in the lines 37-42 all relevant sets
and parameters are committed to both cmp1 objects (lines 44-48).

In the next lines the Gilmore-Gomory procedure is performed.
1. Solve the cutting optimisation problem cut.cmpl with an integer relaxation (line 50 and 53).

2. Assign the shadow prices cuttingOpt.fill[i].marginal to the corresponding elements
price[i] for each pattern (lines 56-58).

3. Solve the pattern generation model cut-pattern.cmpl (line 62).
4. If (1 - optimal objective value) is approximately < 0 (line 65)

then add a new pattern using the activities patternGen.use[i].activity for all elements
in widths (lines 68-70) and jump to step 1,
else

Solve the final cutting optimisation problem cut.cmpl as integer programme (lines 75 and 77)

After finding the final solution the next lines (lines 78-103) are intended to provide some information about
the final integer solution.

Executing this pyCMPL model through using the command:

pyCmpl cut.py

leads to the following output of the pyCMPL script:

Objective value: 47.0

Pattern:

8 pieces of pattern: 3

width 20 - 0
width 45 - 0
width 50 - 2
width 55 - 0
width 75 - 0

5 pieces of pattern: 4

CMPL v.1.12 - Manual 181

width 20 - 0
width 45 - 0
width 50 - 0
width 55 - 2
width 75 - 0

8 pieces of pattern: 6
width 20 - 1
width 45 - 0
width 50 - 0
width 55 - 0
width 75 - 1

18 pieces of pattern: 7
width 20 - 1
width 45 - 2
width 50 - 0
width 55 - 0
width 75 - 0

8 pieces of pattern: 8
width 20 - 3
width 45 - 0
width 50 - 1
width 55 - 0
width 75 - 0

4.5.5.3 jCMPL

The relationship between these cut-pattern.cmpl and cut.cmpl and the entire cutting optimisation
procedure is controlled by the following jCMPL programme CuttingStock.java.

1 package cuttingstock;

2 import jCMPL.*;

3 import java.io.BufferedWriter;

4 import Jjava.io.FileWriter;

5 import java.io.IOException;

6 import java.util.ArrayList;

-

8 public class CuttingStock ({

9

10 public CuttingStock() throws CmplException {

11 try {

12 Cmpl cuttingOpt = new Cmpl ("cut.cmpl");

13 Cmpl patternGen = new Cmpl ("cut-pattern.cmpl");
14

15 cuttingOpt.setOption ("$arg -solver cplex");
16 patternGen.setOption ("%arg -solver cplex");

CMPL v.1.12 - Manual 182

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

CmplParameter r = new CmplParameter ("rollWidth");
r.setValues (110) ;

CmplSet w = new CmplSet ("widths");
int[] wVals = {20, 45, 50, 55, 75};

w.setValues (wVals) ;

CmplParameter o = new CmplParameter ("orders", w);
int[] oVals = {48, 35, 24, 10, 8};

o.setValues (oVals) ;

int nPat = w.len();

CmplSet p = new CmplSet ("patterns");
p.setValues(l, nPat);

ArrayList<ArrayList<Long>> nbr = new ArraylList<ArrayList<Long>>
for (int i = 0; 1 < nPat; 1i++) {

ArrayList<Long> nbrRow = new ArrayList<Long>();
for (int j = 0; j < nPat; j++) {

if (1 == 9) {
Double nr = Math.floor (((Integer) r.value()) /
((int[]) w.values()) [1]) :
nbrRow.add (nr.longValue());
} else {

nbrRow.add (Long.valueOf (0)) ;

}
nbr.add (nbrRow) ;

CmplParameter n = new CmplParameter ("nbr", w, p);

n.setValues (nbr) ;

Double[] price = new Double[w.len()];
for (int i = 0; i < price.length; i++) {

price[i] = 0.0;

CmplParameter pr = new CmplParameter ("price", w);

pr.setValues (price);

cuttingOpt.setSets (w, p);

cuttingOpt.setParameters(r, o, n);

CMPL v.1.12 - Manual 183

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

patternGen.setSets (w);

patternGen.setParameters (r, pr):;

nwo

int ri = cuttingOpt.setOption("%arg -integerRelaxation");

while (true) {

cuttingOpt.solve () ;

CmplSolArray fill=(CmplSolArray)cuttingOpt.getConByName ("£fi11l");

int pos = 0;

for (int with : (int[]) w.values()) {
price[pos] = fill.get(with) .marginal();
pos++;

pr.setValues (price);

patternGen.solve();

CmplSolArray use = (CmplSolArray) patternGen.getVarByName ("use");

if (l-patternGen.solution() .value() < -0.00001) {
nPat++;
p.setValues (1, nPat);
for (int i = 0; i < w.len(); i++) {
ArrayList<Long> tmpList = nbr.get(i);
tmpList.add((Long) use.get(w.get(i)).activity()):;
nbr.set (i, tmpList);
}
n.setValues (nbr) ;
} else {

break;

}
cuttingOpt.delOption(ri) ;

cuttingOpt.solve () ;
CmplSolArray cut = (CmplSolArray) cuttingOpt.getVarByName ("cut");

BufferedWriter out =

new BufferedWriter (new FileWriter ("cuttingStock" + ".stdout"));

out.write(String.format ("Objective value: %$4.2f%n%n",
cuttingOpt.solution () .value()));

out.write ("Pattern:\n");

CMPL v.1.12 - Manual 184

109 out.write (" [")

110 for (int j : (ArraylList<Integer>) p.values()) {

111 ut.write (String.format (" %d ", 3));

112 }

113 out.write ("\n---------——---—————————————— \n");

114 for (int 1 = 0; 1 < w.len(); i++) {

115 out.write (String.format ("%2d | ", w.get(i)));

116 for (int j : (ArrayList<Integer>) p.values()) {

117 out.write(String.format (" %d ", nbr.get(i).get(j - 1))):;
118 }

119 out.write ("\n");

120 }

121 out.write ("\n");

122 for (int j : (ArraylList<Integer>) p.values()) {

123 if ((Long) cut.get(j).activity() > 0) {

124 out.write(String.format ("%2d pieces of pattern: %d %n",
125 (Long) cut.get(j).activity (), 3));

126 for (int 1=0; i<w.len(); 1i++) {

127 out.write(String.format ("\twidth %d - %d%n", w.get (i) ,
128 nbr.get (i) .get (3-1)));

129 }

130 }

131 }

132 out.close();

133 } catch (CmplException e) {

134 System.out.println(e);

135 } catch (IOException e) {

136 System.out.println("IO error" + e);

137 }

138 }

139 }

Cplex is chosen as solver for both instantiated models in the lines 15 and 16 (lines 12,13). In the next lines
18-27 the parameters rollwidth and orders and the set widths are created and the corresponding
data are assigned. The lines 29-51 are intended to create an initial set of patterns whilst the matrix nbr con-
tains only of one pattern per width, where the diagonal elements are equal to the maximal possible number
of rolls of the particular width. After creating the vector price with null values in the lines 53-59 all relevant
sets and parameters are committed to both cmp1 objects (lines 61-65).

In the next lines the Gilmore-Gomory procedure is performed.
5. Solve the cutting optimisation problem cut.cmpl with an integer relaxation (line 67 and 70).

6. Assign the shadow prices cuttingOpt.£fill[i].marginal to the corresponding elements
price[i] for each pattern (lines 75-78).

7. Solve the pattern generation model cut-pattern.cmpl (line 82).

CMPL v.1.12 - Manual 185

8. If (1 — optimal objective value) is approximately < 0 (line 85)
then add a new pattern using the activities patternGen.use[i].activity for all elements
in widths (lines 88-92) and jump to step 1.

else
Solve the final cutting optimisation problem cut.cmpl as integer programme (line 98 and 100)

After finding the final solution the next lines (lines 101-139) are intended to provide some information about
the final integer solution.

Executing this jCMPL model leads to the following output:

Objective value: 47.00

Pattern:

200 5 0 0 O O 1 1 3
45 1 0 2 0 O O 0 2 O
501 0 O 2 O O O O 1
5] 0 O 0 2 O O O O
7% | 0 0 0O o0 1 1 0 O

8 pieces of pattern: 3
width 20 -
width 45 -
width 50 -
width 55 -
width 75 -

5 pieces of pattern: 4
width 20 -
width 45 -
width 50 -
width 55 -
width 75 -

8 pieces of pattern: 6
width 20 -
width 45 -
width 50 -
width 55 -
width 75 -

18 pieces of pattern: 7
width 20 -
width 45 -
width 50 -
width 55 -
width 75 -

8 pieces of pattern: 8

P O O O K~ o N O O O O O N O O

o O o N

CMPL v.1.12 - Manual 186

width
width
width
width
width

20
45
50
55
75

o O B O W

CMPL v.1.12 - Manual

187

5 Authors and Contact

- CMPL
Thomas Schleiff - Halle(Saale), Germany

Mike Steglich - Technical University of Applied Sciences Wildau, Germany - mike.steglich@th-wildau.de

« Coliop, pyCMPL and CMPLServer
Mike Steglich

+ jCMPL
Mike Steglich

Bernhard Knie - Technical University of Applied Sciences Wildau, Germany

- Contact:
¢/o Mike Steglich
Professor of Business Administration, Quantitative Methods and Management Accounting

Technical University of Applied Sciences Wildau
Faculty of Business, Administration and Law
Hochschulring 1

15745 Wildau (Germany)

Tel.: +493375 / 508-365
Fax.: +493375 / 508-566

mike.steglich@th-wildau.de

- Support via mailing list

Please use our CMPL mailing list hosted at COIN-OR http://list.coin-or.org/mailman/listinfo/Cmpl to get a
direct support, to post bugs or to communicate wishes.

CMPL v.1.12 - Manual 188

http://list.coin-or.org/mailman/listinfo/Cmpl

6 Appendix

6.1 Selected CBC parameters

The CBC parameters are taken (mostly unchanged) from the CBC command line help. Only the CBC para-
meters that are useful in a CMPL context are described afterwards.

Usage CBC parameters:

%opt cbc solverOption [solverOptionValue]

Double parameters:

dualB(ound) doubleValue

Initially algorithm acts as if no gap between bounds exceeds this value
Range of values is 1e-20 to 1e+12, default 1e+10

dualT(olerance) doubleValue

For an optimal solution no dual infeasibility may exceed this value
Range of values is 1e-20 to 1e+12, default 1e-07

objective(Scale) doubleValue
Scale factor to apply to objective
Range of values is -1e+20 to 1e+20, default 1
primalT(olerance) doubleValue
For an optimal solution no primal infeasibility may exceed this value
Range of values is 1e-20 to 1e+12, default 1e-07
primalW(eight) doubleValue
Initially algorithm acts as if it costs this much to be infeasible
Range of values is 1e-20 to 1e+20, default 1e+10
rhs(Scale) doubleValue
Scale factor to apply to rhs and bounds
Range of values is -1e+20 to 1e+20, default 1
Branch and Cut double parameters:
allow(ableGap) doubleValue
Stop when gap between best possible and best less than this

Range of values is 0 to 1e+20, default 0

CMPL v.1.12 - Manual 189

artif(icialCost) doubleValue

Costs >= these are treated as artificials in feasibility pump 0.0 off - otherwise variables with
costs >= these are treated as artificials and fixed to lower bound in feasibility pump

Range of values is 0 to 1.79769e+308, default 0
cuto(ff) doubleValue
All solutions must be better than this value (in a minimization sense).

This is also set by code whenever it obtains a solution and is set to value of objective for
solution minus cutoff increment.

Range of values is -1e+60 to 1e+60, default 1e+50
fix(OnDj) doubleValue
Try heuristic based on fixing variables with reduced costs greater than this

If this is set integer variables with reduced costs greater than this will be fixed before branch
and bound - use with extreme caution!

Range of values is -1e+20 to 1e+20, default -1
fraction(forBAB) doubleValue
Fraction in feasibility pump

After a pass in feasibility pump, variables which have not moved about are fixed and if the
pre-processed model is small enough a few nodes of branch and bound are done on reduced
problem. Small problem has to be less than this fraction of original.

Range of values is 1e-05 to 1.1, default 0.5
inc(rement) doubleValue
A valid solution must be at least this much better than last integer solution

Whenever a solution is found the bound on solutions is set to solution (in a minimization
sense) plus this. If it is not set then the code will try and work one out.

Range of values is -1e+20 to 1e+20, default 1e-05
inf(easibilityWeight) doubleValue
Each integer infeasibility is expected to cost this much
Range of values is 0 to 1e+20, default 0
integerT(olerance) doubleValue
For an optimal solution no integer variable may be this away from an integer value
Range of values is 1e-20 to 0.5, default 1e-06
preT(olerance) doubleValue
Tolerance to use in presolve

Range of values is 1e-20 to 1e+12, default 1e-08

CMPL v.1.12 - Manual 190

pumpC(utoff) doubleValue
Fake cutoff for use in feasibility pump
0.0 off - otherwise add a constraint forcing objective below this value in feasibility pump
Range of values is -1.79769e+308 to 1.79769e+308, default 0
pumpI(ncrement) doubleValue
Fake increment for use in feasibility pump

0.0 off - otherwise use as absolute increment to cut off when solution found in feasibility
pump
Range of values is -1.79769e+308 to 1.79769e+308, default 0

ratio(Gap) doubleValue

If the gap between best solution and best possible solution is less than this fraction of the
objective value at the root node then the search will terminate.

Range of values is 0 to 1e+20, default 0
reallyO(bjectiveScale) doubleValue
Scale factor to apply to objective in place
Range of values is -1e+20 to 1e+20, default 1
sec(onds) doubleValue
maximum seconds
After this many seconds coin solver will act as if maximum nodes had been reached.
Range of values is -1 to 1e+12, default 1e+08
tighten(Factor) doubleValue
Tighten bounds using this times largest activity at continuous solution

Range of values is 0.001 to 1e+20, default -1

Integer parameters:

idiot(Crash) integerValue

This is a type of 'crash' which works well on some homogeneous problems. It works best on
problems with unit elements and rhs but will do something to any model. It should only be
used before primal. It can be set to -1 when the code decides for itself whether to use it, 0
to switch off or n > 0 to do n passes.

Range of values is -1 to 99999999, default -1
maxF(actor) integerValue
Maximum number of iterations between refactorizations

Range of values is 1 to 999999, default 200

CMPL v.1.12 - Manual 191

maxlIt(erations) integerValue

Maximum number of iterations before stopping

Range of values is 0 to 2147483647, default 2147483647
passP(resolve) integerValue

How many passes in presolve

Range of values is -200 to 100, default 5
pO(ptions) integerValue

If this is > 0 then presolve will give more information and branch and cut will give statistics

Range of values is 0 to 2147483647, default 0
slp(Value) integerValue

Number of slp passes before primal

If you are solving a quadratic problem using primal then it may be helpful to do some se-
quential Lps to get a good approximate solution.

Range of values is -1 to 50000, default -1
slog(Level) integerValue

Level of detail in (LP) Solver output

Range of values is -1 to 63, default 1
subs(titution) /integerValue

How long a column to substitute for in presolve

Normally Presolve gets rid of 'free' variables when there are no more than 3 variables in
column. If you increase this the number of rows may decrease but number of elements may
increase.

Range of values is 0 to 10000, default 3
Branch and Cut integer parameters:
cutD(epth) integerValue
Depth in tree at which to do cuts

Cut generators may be - off, on only at root, on if they look possible and on. If they are
done every node then that is that, but it may be worth doing them every so often. The ori-
ginal method was every so many nodes but it is more logical to do it whenever depth in tree
is @ multiple of K. This option does that and defaults to -1 (off -> code decides).

Range of values is -1 to 999999, default -1
cutL(ength) integerValue
Length of a cut

CMPL v.1.12 - Manual 192

At present this only applies to Gomory cuts. -1 (default) leaves as is. Any value >0 says that
all cuts <= this length can be generated both at root node and in tree. 0 says to use some
dynamic lengths. If value >=10,000,000 then the length in tree is value%10000000 - so
10000100 means unlimited length at root and 100 in tree.

Range of values is -1 to 2147483647, default -1
dense(Threshold) integerValue

Whether to use dense factorization

Range of values is -1 to 10000, default -1
depth(MiniBab) integerValue

Depth at which to try mini BAB

Rather a complicated parameter but can be useful. -1 means off for large problems but on
as if -12 for problems where rows+columns<500, -2 means use Cplex if it is linked in. Oth-
erwise if negative then go into depth first complete search fast branch and bound when
depth>= -value-2 (so -3 will use this at depth>=1). This mode is only switched on after
500 nodes. If you really want to switch it off for small problems then set this to -999. If
>=0 the value doesn't matter very much. The code will do approximately 100 nodes of fast
branch and bound every now and then at depth>=5. The actual logic is too twisted to de-
scribe here.

Range of values is -2147483647 to 2147483647, default -1
diveO(pt) integerValue
Diving options
If >2 && <8 then modify diving options
-3 only at root and if no solution,
-4 only at root and if this heuristic has not got solution,
-5 only at depth <4,
—6 decay, 7 run up to 2 times
if solution found 4 otherwise.
Range of values is -1 to 200000, default 3
hOp(tions) integerValue
Heuristic options

1 says stop heuristic immediately allowable gap reached. Others are for feasibility pump - 2
says do exact number of passes given, 4 only applies if initial cutoff given and says relax
after 50 passes, while 8 will adapt cutoff rhs after first solution if it looks as if code is
stalling.

Range of values is -9999999 to 9999999, default 0

CMPL v.1.12 - Manual 193

hot(StartMaxIts) integerValue

Maximum iterations on hot start

Range of values is 0 to 2147483647, default 100
log(Level) integerValue

Level of detail in Coin branch and Cut output

If 0 then there should be no output in normal circumstances. 1 is probably the best value
for most uses, while 2 and 3 give more information.

Range of values is -63 to 63, default 1
maxN(odes) integerValue

Maximum number of nodes to do

Range of values is -1 to 2147483647, default 2147483647
maxS(olutions) integerValue

Maximum number of solutions to get

You may want to stop after (say) two solutions or an hour. This is checked every node in
tree, so it is possible to get more solutions from heuristics.

Range of values is 1 to 2147483647, default -1
passC(uts) integerValue
Number of cut passes at root node

The default is 100 passes if less than 500 columns, 100 passes (but stop if drop small if less
than 5000 columns, 20 otherwise

Range of values is -9999999 to 9999999, default -1
passF(easibilityPump) integerValue

How many passes in feasibility pump

This fine tunes Feasibility Pump by doing more or fewer passes.

Range of values is 0 to 10000, default 30
passT(reeCuts) integerValue

Number of cut passes in tree

Range of values is -9999999 to 9999999, default 1
small(Factorization) /integerValue

Whether to use small factorization

If processed problem <= this use small factorization

Range of values is -1 to 10000, default -1

CMPL v.1.12 - Manual 194

strong(Branching) integerValue
Number of variables to look at in strong branching
Range of values is 0 to 999999, default 5
thread(s) integerValue
Number of threads to try and use

To use multiple threads, set threads to number wanted. It may be better to use one or two
more than number of cpus available. If 100+n then n threads and search is repeatable
(maybe be somewhat slower), if 200+n use threads for root cuts, 400+n threads used in
sub-trees.

Range of values is -100 to 100000, default 0
trust(PseudoCosts) integerValue
Number of branches before we trust pseudocosts

Range of values is -3 to 2000000, default 5

Keyword parameters:
bscale option
Whether to scale in barrier (and ordering speed)
Possible options: off on offl onl off2 on2, default off
chol(esky) option
Which cholesky algorithm
Possible options: native dense fudge(Long_dummy) wssmp_dummy
crash option
Whether to create basis for problem

If crash is set on and there is an all slack basis then Clp will flip or put structural variables
into basis with the aim of getting dual feasible. On the whole dual seems to be better
without it and there are alternative types of 'crash’ for primal e.g. 'idiot' or 'sprint'.

Possible options: off on so(low_halim) ha(lim_solow(JJF mods)), dfeault off
cross(over) option
Whether to get a basic solution after barrier

Interior point algorithms do not obtain a basic solution (and the feasibility criterion is a bit
suspect (JJF)). This option will crossover to a basic solution suitable for ranging or branch
and cut. With the current state of quadratic it may be a good idea to switch off crossover
for quadratic (and maybe presolve as well) - the option maybe does this.

Possible options: on off maybe presolve, default on

CMPL v.1.12 - Manual 195

dualP(ivot) option

Dual pivot choice algorithm

Possible options: auto(matic) dant(zig) partial steep(est), default auto(matic)
fact(orization) option

Which factorization to use

Possible options: normal dense simple osl, default normal
gamma((Delta)) option

Whether to regularize barrier

Possible options: off on gamma delta onstrong gammastrong deltastrong, default off
KKT option

Whether to use KKT factorization

Possible options: off on, default off
perturb(ation) option

Whether to perturb problem

Possible options: on off, default on
presolve option

Presolve analyzes the model to find such things as redundant equations, equations which fix
some variables, equations which can be transformed into bounds etc etc. For the initial
solve of any problem this is worth doing unless you know that it will have no effect. on will
normally do 5 passes while using 'more' will do 10. If the problem is very large you may
need to write the original to file using 'file'.

Possible options for presolve are: on off more file, default on
primalP(ivot) option
Primal pivot choice algorithm

Possible options: auto(matic) exa(ct) dant(zig) part(ial) steep(est) change sprint, default
auto(matic)

scal(ing) option
Whether to scale problem

Possible options: off equi(librium) geo(metric) auto(matic) dynamic rows(only), default
auto(matic)

spars(eFactor) option
Whether factorization treated as sparse

Possible options: on off, default on

CMPL v.1.12 - Manual 196

timeM(ode) option
Whether to use CPU or elapsed time

cpu uses CPU time for stopping, while elapsed uses elapsed time. (On Windows, elapsed
time is always used).

Possible options: cpu elapsed, default cpu
vector option
If this parameter is set to on ClpPackedMatrix uses extra column copy in odd format.

Possible options: off on, default off

Branch and Cut keyword parameters:
clique(Cuts) option
Whether to use Clique cuts
Possible options: off on root ifmove forceOn onglobal, default ifmove
combine(Solutions) option
Whether to use combine solution heuristic

This switches on a heuristic which does branch and cut on the problem given by just using
variables which have appeared in one or more solutions. It obviously only tries after two or
more solutions. See Rounding for meaning of on,both,before

Possible options: off on both before, default on
combine2(Solutions) option
Whether to use crossover solution heuristic

This switches on a heuristic which does branch and cut on the problem given by fixing vari-
ables which have same value in two or more solutions. It obviously only tries after two or
more solutions. See Rounding for meaning of on,both,before

Possible options: off on both before, default off
cost(Strategy) option
How to use costs as priorities

This orders the variables in order of their absolute costs - with largest cost ones being
branched on first. This primitive strategy can be surprsingly effective. The column order
option is obviously not on costs but easy to code here.

Possible options: off pri(orities) column(Order?) 01f(irst?) 01l(ast?) length(?), default off

CMPL v.1.12 - Manual 197

cuts(OnOff) option
Switches all cuts on or off

This can be used to switch on or off all cuts (apart from Reduce and Split). Then you can do
individual ones off or on See branchAndCut for information on options.

Possible options: off on root ifmove forceOn, default on
Dins option

This switches on Distance induced neighborhood Search. See Rounding for meaning of
on,both,before

Possible options: off on both before often, default off
DivingS(ome) option

This switches on a random diving heuristic at various times. C - Coefficient, F - Fractional, G
- Guided, L - LineSearch, P - PseudoCost, V - VectorLength. You may prefer to use individual
on/off See Rounding for meaning of on,both,before

Possible options: off on both before, default off
DivingC(oefficient) option

Whether to try DiveCoefficient

Possible options: off on both before, default on
DivingF(ractional) option

Whether to try DiveFractional

Possible options: off on both before, default off
DivingG(uided) option

Whether to try DiveGuided

Possible options: off on both before, default off
DivingL(ineSearch) option

Whether to try DivelLineSearch

Possible options: off on both before, default off
DivingP(seudoCost) option

Whether to try DivePseudoCost

Possible options: off on both before, default off
DivingV(ectorLength) option

Whether to try DiveVectorLength

Possible options: off on both before, default off

CMPL v.1.12 - Manual 198

feas(ibilityPump) option

This switches on feasibility pump heuristic at root. This is due to Fischetti, Lodi and Glover
and uses a sequence of Lps to try and get an integer feasible solution. Some fine tuning is
available by passFeasibilityPump and also pumpTune. See Rounding for meaning of
on,both,before

Possible options: off on both before, default on
flow(CoverCuts) option

This switches on flow cover cuts (either at root or in entire tree)

See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal, default ifmove
gomory(Cuts) option

Whether to use Gomory cuts

The original cuts - beware of imitations! Having gone out of favor, they are now more fash-
ionable as LP solvers are more robust and they interact well with other cuts. They will al-
most always give cuts (although in this executable they are limited as to number of variables
in cut). However the cuts may be dense so it is worth experimenting (Long allows any
length). See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal forceandglobal forceLongOn long, de-
fault ifmove

greedy(Heuristic) option
Whether to use a greedy heuristic

Switches on a greedy heuristic which will try and obtain a solution. It may just fix a percent-
age of variables and then try a small branch and cut run. See Rounding for meaning of
on,both,before

Possible options: off on both before, default on
heur(isticsOnOff) option

Switches most heuristics on or off

Possible options: off on, default on
knapsack(Cuts) option

This switches on knapsack cuts (either at root or in entire tree)

Possible options: off on root ifmove forceOn onglobal forceandglobal, default ifmove
lift(AndProjectCuts) option

Whether to use Lift and Project cuts

Possible options: off on root ifmove forceOn, default off

CMPL v.1.12 - Manual 199

local(TreeSearch) option

This switches on a local search algorithm when a solution is found. This is from Fischetti and
Lodi and is not really a heuristic although it can be used as one. When used from Coin solve
it has limited functionality. It is not switched on when heuristics are switched on.

Possible options: off on, default off
mixed(IntegerRoundingCuts) option

This switches on mixed integer rounding cuts (either at root or in entire tree) See bran-
chAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal, default ifmove
naive(Heuristics) option

Really silly stuff e.g. fix all integers with costs to zero!. Do option does heuristic before pre-
processing

Possible options: off on both before, default off
node(Strategy) option
What strategy to use to select nodes

Normally before a solution the code will choose node with fewest infeasibilities. You can
choose depth as the criterion. You can also say if up or down branch must be done first
(the up down choice will carry on after solution). Default has now been changed to hybrid
which is breadth first on small depth nodes then fewest.

Possible options: hybrid fewest depth upfewest downfewest updepth downdepth, default
fewest

pivotAndC(omplement) option

Whether to try Pivot and Complement heuristic

Possible options: off on both before, default off
pivotAndF(ix) option

Whether to try Pivot and Fix heuristic

Possible options: off on both before, default off
preprocess option

This tries to reduce size of model in a similar way to presolve and it also tries to strengthen
the model - this can be very useful and is worth trying. Save option saves on file pre-
solved.mps. equal will turn <= cliques into ==. sos will create sos sets if all 0-1 in sets
(well one extra is allowed) and no overlaps. trysos is same but allows any number extra.
equalall will turn all valid inequalities into equalities with integer slacks.

Possible options: off on save equal sos trysos equalall strategy aggregate forcesos, default
S0S

CMPL v.1.12 - Manual 200

probing(Cuts) option

This switches on probing cuts (either at root or in entire tree) See branchAndCut for inform-
ation on options. but strong options do more probing

Possible options: off on root ifmove forceOn onglobal forceonglobal forceOnBut forceOn-
Strong forceOnButStrong strongRoot, default forceOnStrong

rand(omizedRounding) option
Whether to try randomized rounding heuristic
Possible options: off on both before, default off
reduce(AndSplitCuts) option

This switches on reduce and split cuts (either at root or in entire tree) See branchAndCut
for information on options.

Possible options: off on root ifmove forceOn, default off
residual(CapacityCuts) option
Residual capacity cuts. See branchAndCut for information on options.
Possible options: off on root ifmove forceOn, default off
Rens option

This switches on Relaxation enforced neighborhood Search. on just does 50 nodes 200 or
1000 does that many nodes. Doh option does heuristic before preprocessing

Possible options: off on both before 200 1000 10000 dj djbefore, default off
Rins option

This switches on Relaxed induced neighborhood Search. Doh option does heuristic before
preprocessing

Possible options: off on both before often, default on
round(ingHeuristic) option

This switches on a simple (but effective) rounding heuristic at each node of tree. On means
do in solve i.e. after preprocessing, Before means do if doHeuristics used, off otherwise, and
both means do if doHeuristics and in solve.

Possible options: off on both before, default on
two(MirCuts) option

This switches on two phase mixed integer rounding cuts (either at root or in entire tree)
See branchAndCut for information on options.

Possible options: off on root ifmove forceOn onglobal forceandglobal forceLongOn, default
root

CMPL v.1.12 - Manual 201

Vnd(VariableNeighborhoodSearch) option
Whether to try Variable Neighborhood Search

Possible options: off on both before intree, default off

Actions:
barr(ier) Solve using primal dual predictor corrector algorithm
dualS(implex) Do dual simplex algorithm
either(Simplex) Do dual or primal simplex algorithm
initialS Solve to continuous
This just solves the problem to continuous - without adding any cuts
outDup takes duplicate rows etc out of integer model
primalS Do primal simplex algorithm
reallyS Scales model in place
stat Print some statistics
tightLP Poor person's preSolve for now

Branch and Cut actions:

branch Do Branch and Cut

6.2 Selected GLPK parameters
The following parameters are taken from the GLPK command line help.

Only the GLPK parameters that are useful in a CMPL context are described afterwards.

Usage GLPK parameters:

%opt glpk solverOption [solverOptionValue]

General options:

simplex use simplex method (default)

interior use interior point method (LP only)

scale scale problem (default)

noscale do not scale problem

ranges filename write sensitivity analysis report to filename in

printable format (simplex only)

CMPL v.1.12 - Manual 202

tmlim nnn limit solution time to nnn seconds

memlim nnn limit available memory to nnn megabytes

wlp filename write problem to filename in CPLEX LP format

wglp filename write problem to filename in GLPK format

wenf filename write problem to filename in DIMACS CNF-SAT format
log filename write copy of terminal output to filename

LP basis factorization options:
luf LU + Forrest-Tomlin update
(faster, less stable; default)
cbg LU + Schur complement + Bartels-Golub update
(slower, more stable)
cgr LU + Schur complement + Givens rotation update

(slower, more stable)

Options specific to simplex solver:

primal use primal simplex (default)

dual use dual simplex

std use standard initial basis of all slacks

adv use advanced initial basis (default)

bib use Bixby's initial basis

steep use steepest edge technique (default)
nosteep use standard "textbook" pricing

relax use Harris' two-pass ratio test (default)
norelax use standard "textbook" ratio test

presol use presolver (default; assumes scale and adv)
nopresol do not use presolver

exact use simplex method based on exact arithmetic
xcheck check final basis using exact arithmetic

Options specific to interior-point solver:
nord use natural (original) ordering

qmd use quotient minimum degree ordering

CMPL v.1.12 - Manual 203

amd

symamd

nomip
first

last
mostf
drtom
pcost
dfs

bfs
bestp
bestb
intopt
nointopt
binarize
fpump
gomory
mir
cover
clique
cuts
mipgap o/

minisat

objbnd bound

CMPL v.1.12 - Manual

use approximate minimum degree ordering (default)

use approximate minimum degree ordering

Options specific to MIP solver:

consider all integer variables as continuous (allows solving MIP as pure LP)
branch on first integer variable
branch on last integer variable
branch on most fractional variable

branch using heuristic by Driebeck and Tomlin (default)

branch using hybrid pseudocost heuristic (may be useful for hard instances)

backtrack using depth first search

backtrack using breadth first search

backtrack using the best projection heuristic
backtrack using node with best local bound (default)
use MIP presolver (default)

do not use MIP presolver

replace general integer variables by binary ones (assumes intopt)
apply feasibility pump heuristic

generate Gomory's mixed integer cuts

generate MIR (mixed integer rounding) cuts
generate mixed cover cuts

generate clique cuts

generate all cuts above

set relative mip gap tolerance to tol

translate integer feasibility problem to CNF-SAT and solve it with MiniSat
solver

add inequality obj <= bound (minimization) or obj >= bound
(maximization) to integer feasibility problem (assumes minisat)

204

References

- Achterberg, T. 2009. SCIP - solving constraint integer programs. Mathematical Programming Compu-
tation Volume 1 Number 1. 1-41.

« Coulouris, G.F.; J. Dollimore, T. Kindberg, G. Blai. 2012. Distributed Systems : Concepts and Design,
5th ed., Addison-Wesley.

« Fourer, R., D. M. Gay, B. W. Kernighan. 2003. AMPL: A Modeling Language for Mathematical Pro-
gramming, 2nd ed. Duxbury Press, Pacific Grove, CA.

« Anderson, D. R., D. J. Sweeney, Th. A. Williams, K. Martin. 2011. An Introduction to Management
Science : Quantitative Approaches to Decision Making. 13th ed.. South-Western.

« Fourer, R, J. Ma, R. K. Martin. 2010. Optimization Services: A Framework for Distributed Optimiza-
tion. Operations Research 58(6). 1624-1636.

« GLPK. 2014. GNU Linear Programming Kit Reference Manual for GLPK Version 4.54.

« Hillier, F. S., G. J. Lieberman. 2010. Introduction to Operations Research. 9th ed.. McGraw-Hill
Higher Education.

« Foster, 1., C. Kesselman (editors). 2004. The Grid2: 2nd Edition: Blueprint for a New Computing In-
frastructure, Kindle ed., Morgan Kaufmann Publishers Inc.

+ Kshemkalyani, A.D., M. Singhal, M. 2008. Distributed Computing — Principles, Algorithms, and Sys-
tems, Kindle ed., Cambridge University Press.

« St Laurent, S., J. Johnston, E. Dumbill. 2001. Programming Web Services with XML-RPC, 1st ed.,
O'Reilly.

- Rogge, R., M. Steglich. 2007. Betriebswirtschaftliche Entscheidungsmodelle zur Verfahrenswahl/
sowie Auflagen- und Lagerpolitiken, Diskussionsbeitrage zu Wirtschaftsinformatik und Operations
Research 10/2007, Martin-Luther-Universitat Halle-Wittenberg.

CMPL v.1.12 - Manual 205

	1 About CMPL
	2 CMPL Language reference manual
	2.1 CMPL elements
	2.1.1 General structure of a CMPL model
	2.1.2 Keywords and other syntactic elements
	2.1.3 Objects
	2.1.3.1 Parameters
	2.1.3.2 Variables
	2.1.3.3 Indices and sets
	2.1.3.4 Line names

	2.1.4 CMPL header

	2.2 Parameter Expressions
	2.2.1 Overview
	2.2.2 Array functions
	2.2.3 Set operations and functions
	2.2.4 Mathematical functions
	2.2.5 Type casts
	2.2.6 String operations

	2.3 Input and output operations
	2.3.1 Error and user messages
	2.3.2 cmplData files
	2.3.3 Readcsv and readstdin
	2.3.4 Include

	2.4 Statements
	2.4.1 parameters and variables section
	2.4.2 objectives and constraints section

	2.5 Control structure
	2.5.1 Overview
	2.5.2 Control header
	2.5.2.1 Iteration headers
	2.5.2.2 Condition headers
	2.5.2.3 Local assignments

	2.5.3 Alternative bodies
	2.5.4 Control statements
	2.5.5 Specific control structures
	2.5.5.1 For loop
	2.5.5.2 If-then clause
	2.5.5.3 Switch clause
	2.5.5.4 While loop

	2.5.6 Set and sum control structure as expression

	2.6 Matrix-Vector notations
	2.7 Automatic model reformulations
	2.7.1 Overview
	2.7.2 Matrix reductions
	2.7.3 Equivalent transformations of Variable Products
	2.7.3.1 Variable Products with at least one binary variable
	2.7.3.2 Variable Product with at least one integer variable

	2.8 Examples
	2.8.1 Selected decision problems
	2.8.1.1 The diet problem
	2.8.1.2 Production mix
	2.8.1.3 Production mix including thresholds and step-wise fixed costs
	2.8.1.4 The knapsack problem
	2.8.1.5 Transportation problem using 1-tuple sets
	2.8.1.6 Transportation problem using multidimensional sets (2-tuple sets)
	2.8.1.7 Quadratic assignment problem
	2.8.1.8 Quadratic assignment problem using the solutionPool option
	2.8.1.9 Generic travelling salesman problem

	2.8.2 Other selected examples
	2.8.2.1 Solving the knapsack problem
	2.8.2.2 Finding the maximum of a concave function using the bisection method

	3 CMPL software package
	3.1 CMPL software package in a glance
	3.2 Installation
	3.3 CMPL
	3.3.1 Running CMPL
	3.3.2 Usage of the CMPL command line tool
	3.3.3 Syntax checks
	3.3.4 Using CMPL with several solvers
	3.3.4.1 CBC
	3.3.4.2 GLPK
	3.3.4.3 Gurobi
	3.3.4.4 SCIP
	3.3.4.5 CPLEX
	3.3.4.6 Other solvers

	3.4 Coliop
	3.5 CMPLServer
	3.5.1 Single server mode
	3.5.2 Grid mode
	3.5.3 Reliability and failover

	3.6 pyCMPL
	3.7 jCMPL
	3.8 Input and output file formats
	3.8.1 Overview
	3.8.2 CMPL and CmplData
	3.8.3 Free - MPS
	3.8.4 CmplInstance
	3.8.5 ASCII or CSV result files
	3.8.6 CmplSolutions
	3.8.7 CmplMessages
	3.8.8 CmplInfo

	4 CMPL's APIs
	4.1 Creating Python and Java applications with a local CMPL installation
	4.1.1 pyCMPL
	4.1.2 jCMPL

	4.2 Creating Python and Java applications using CMPLServer
	4.2.1 pyCMPL
	4.2.2 jCMPL

	4.3 pyCMPL reference manual
	4.3.1 CmplSets
	4.3.2 CmplParameters
	4.3.3 Cmpl
	4.3.3.1 Establishing models
	4.3.3.2 Manipulating models
	4.3.3.3 Solving models
	4.3.3.4 Reading solutions
	4.3.3.5 Reading CMPL messages

	4.3.4 CmplExceptions

	4.4 jCMPL reference manual
	4.4.1 CmplSets
	4.4.2 CmplParameters
	4.4.3 Cmpl
	4.4.3.1 Establishing models
	4.4.3.2 Manipulating models
	4.4.3.3 Solving models
	4.4.3.4 Reading solutions
	4.4.3.5 Reading CMPL messages

	4.4.4 CmplExceptions

	4.5 Examples
	4.5.1 The diet problem
	4.5.1.1 Problem description and CMPL model
	4.5.1.2 pyCMPL
	4.5.1.3 jCmpl

	4.5.2 Transportation problem
	4.5.2.1 Problem description and CMPL model
	4.5.2.2 pyCMPL
	4.5.2.3 jCMPL

	4.5.3 The shortest path problem
	4.5.3.1 Problem description and CMPL model
	4.5.3.2 pyCMPL
	4.5.3.3 jCMPL

	4.5.4 Solving randomized shortest path problems in parallel
	4.5.4.1 Problem description
	4.5.4.2 pyCMPL
	4.5.4.3 jCMPL

	4.5.5 Column generation for a cutting stock problem
	4.5.5.1 Problem description and CMPL model
	4.5.5.2 jCMPL
	4.5.5.3 jCMPL

	5 Authors and Contact
	6 Appendix
	6.1 Selected CBC parameters
	6.2 Selected GLPK parameters

